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Abstract
In this work, a supervised probabilistic approach is proposed that integrates the learning using privileged information (LUPI) 
paradigm into a hidden conditional random field (HCRF) model, called HCRF+, for human action recognition. The proposed 
model employs a self-training technique for automatic estimation of the regularization parameters of the objective function. 
Moreover, the method provides robustness to outliers by modeling the conditional distribution of the privileged information 
by a Student’s t-density function, which is naturally integrated into the HCRF+ framework. The proposed method was evalu-
ated using different forms of privileged information on four publicly available datasets. The experimental results demonstrate 
its effectiveness concerning the state of the art in the LUPI framework using both hand-crafted and deep learning-based 
features extracted from a convolutional neural network.

Keywords Hidden conditional random fields · Learning using privileged information · Human activity recognition · 
Student’s t-distribution

1 Introduction

Recent advances in computer vision such as video surveil-
lance, human–machine interactions, and semantic mul-
timodal analysis [5, 22, 53, 61] rely on machine learning 
techniques trained on large-scale human-annotated datasets. 
However, training data may not always be available during 
testing, and learning using privileged information (LUPI) 
[34, 36] has been used to tackle this problem. The idea 
behind privileged information is that one may have access 
to additional information about the training samples, which 
is not available during testing.

Consequently, classification models may often suffer 
from “structure imbalance” between training and testing 

data, which may be represented by the LUPI paradigm. The 
LUPI technique simulates a real-life learning condition, 
when a student learns from his/her teacher, where the latter 
provides the student with additional knowledge, comments, 
explanations, or rewards in class. Subsequently, the student 
should be able to face any problem related to what he/she 
has learned without the help of the teacher.

The problem of human activity understanding using 
privileged knowledge is on its own a difficult task. Since 
privileged information is only available during training, one 
should combine both regular and privileged information into 
a unified classifier to predict the true class label. However, 
it is quite difficult to identify the most useful information 
to be used as privileged as the lack of informative data or 
the presence of misleading information may influence the 
performance of the model.

We address these issues by presenting a probabilis-
tic approach, based on hidden conditional random fields 
(HCRFs) [45], called HCRF+. The proposed method can 
learn human activities by exploiting additional information 
about the input data, that may reflect on natural or auxiliary 
properties about classes and members of the classes of the 
training data (Fig. 1). This information is used for training 
purposes only but not for predicting the true classes (where, 
in general, this information is missing).
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In particular, the proposed HCRF+ method differenti-
ates from previous approaches [58], which may also use the 
LUPI paradigm, by incorporating privileged information in 
a supervised probabilistic manner, which facilitates the train-
ing process by learning the conditional probability distribu-
tion between human activities and observations. We also 
introduce a novel technique for automatic estimation of the 
optimal regularization parameters for the learning process. 
The method is adaptive as the regularization parameters are 
computed from the training data through a self-training pro-
cedure. It is worth noting that the proposed methodology 
is not limited to the use of a specific form of privileged 
information, but it is general and may handle any form of 
additional data.

Moreover, our method can efficiently manage dissimilari-
ties in input data, which may correspond to noise, missing 
data, or outliers, using a Student’s t-distribution to model the 
conditional probability of the privileged information. Such 
dissimilarities may harm the classification accuracy and lead 
to excessive sensitivity when input data are insufficient or 
contain large intra-class variations. In particular, the use of 
Student’s t-distribution is justified by the property that it 
has heavier tails than a standard Gaussian distribution, thus 
providing robustness to outliers [43].

The main contributions of our work can be summarized in 
the following points. A human activity recognition method 
is proposed, which exploits privileged information in a 

probabilistic manner by introducing a classification scheme 
based on HCRFs to deal with missing or incomplete data dur-
ing testing. Both maximum likelihood and maximum margin 
approaches are incorporated into the proposed HCRF+ model. 
Moreover, a novel technique for adaptive estimation of the 
regularization term during the learning process is introduced 
by incorporating both privileged and regular data. Finally, 
contrary to previous methods, which may be sensitive to out-
lying data measurements, a robust framework for recogniz-
ing human activities is intergraded by employing a Student’s 
t-distribution to attain robustness against outliers.

The remainder of the paper is organized as follows: In 
Sect. 2, a review of the related work is presented. Section 3 
presents the proposed HCRF+ approach including the maxi-
mum likelihood and maximum margin approaches for learn-
ing the model’s parameters and the automatic estimation 
of the regularization terms. In Sect. 4, experimental results 
are reported, and a discussion about the performance of the 
proposed approach is offered in Sect. 5. Finally, conclusions 
are drawn in Sect. 6.

2  Related work

A major family of methods relies on learning human activi-
ties by building visual models and assigning activity roles 
to people associated with an event [48, 65]. In recent years, 

Fig. 1  Robust learning using 
privileged information. Given 
a set of training examples and 
a set of additional informa-
tion about the training samples 
(left), our system can suc-
cessfully recognize the class 
label of the underlying activity 
without having access to the 
additional information during 
testing (right). We explore three 
different forms of privileged 
information (e.g., audio signals, 
human poses, and attributes) by 
modeling them with a Student’s 
t-distribution and incorporating 
them into the HCRF+ model
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there has been an increased focus on the combination of 
different kinds of modalities for activity classification [13, 
15, 64]. A shared representation of human poses and visual 
information has also been explored [4, 37, 73]. However, the 
effectiveness of such methods is limited by tracking inac-
curacies in human poses and complex backgrounds. Unlike 
previous approaches, the work of Yan et al. [71] exploited 
spatiotemporal pose feature representations from three 
semantic pose modalities. Finally, a convolutional neural 
network (CNN) incorporates the learned pose representation 
as input to recognize human actions.

A special focus has also been given to recognizing 
human activities from movies or TV shows by exploiting 
scene contexts to localize activities and understand human 
interactions [20, 41]. Ramanathan et al. [47] improved the 
recognition accuracy of such complex videos by relating 
textual descriptions and visual context to a unified frame-
work. Guadarrama et al. [16] proposed an alternative to the 
previous approach that takes a video clip as input and gen-
erates short textual descriptions, which may correspond to 
an activity label that is unseen during training. However, 
natural video sequences may contain irrelevant scenes or 
scenes with multiple actions. Shao et al. [50] mixed appear-
ance and motion features using multitask deep learning for 
recognizing group activities in crowded scenes collected 
from the web. Marín-Jiménez et al. [38] used a bag of visual-
audio words scheme along with late fusion for recognizing 
human interactions in TV shows. Even though their method 
performs well in recognizing human interaction, the lack of 
an intrinsic audio-visual relationship estimation limits the 
recognition problem.

Multiview human action recognition has also gained 
much popularity over the last decades. Gao et al. [14] pro-
posed an adaptive fusion technique to combine information 
from multiple domains into a single processing pipeline. 
The authors constructed a category-level dictionary learn-
ing model to learn the adaptive weight of each camera and 
reweigh the learning samples according to their contribution 
to the action recognition task. In the same spirit, the work 
of Liu et al. [32] proposed a hierarchical dictionary learn-
ing-based method to encode local and global visual cues 
extracted from RGB and depth modalities for multiple-view 
human action recognition.

Intermediate semantic features representation for recog-
nizing unseen actions during training has been extensively 
studied [12, 33, 75]. These intermediate features are learned 
during training and enable cross-stream fusion for captur-
ing the correlations of true spatiotemporal features instead 
of treating appearance and motion features separately [9]. 
Also, the importance of visual relationship reasoning has 
been explored by Tsai et al. [56], where a gated fully con-
nected conditional random field was proposed to measure 
the relationship between different entities such as objects, 

attributes, subjects, or scenes, in the video sequence. Fur-
thermore, a robust video-based human action recognition 
method that automatically infers the number of hidden states 
of a standard HCRF model directly from the input data and 
coupled as a mixture of three Student’s t-components was 
also proposed by Vrigkas et al. [59].

Recent methods that exploited deep neural networks have 
demonstrated remarkable results in large-scale datasets [3, 
6]. Although large-scale datasets have proven to be a fun-
damental aspect of video action understanding, their inher-
ent bias may lead to erroneous/controversial conclusions. 
Li et al. [31] minimized the representation bias by stitching 
together different action recognition datasets and extracting 
different levels of the representation hierarchy. The resulted 
dataset is an unbiased representation of the existing ones.

Perrett and Damen [44] proposed a cross-domain con-
volutional architecture, where long short-term memory 
(LSTM) networks [7] are used to learn temporal dependen-
cies from two related to action recognition datasets. The 
LSTMs are connected to CNNs that can be jointly trained to 
simultaneously learn spatiotemporal dynamics. Wang et al. 
[66] presented a new video representation that employs 
CNNs to learn multi-scale convolutional feature maps and 
introduced the strategies of trajectory-constrained sam-
pling and pooling to encode deep features into informative 
descriptors. Tran et al. [55] introduced a 3D ConvNet archi-
tecture that learns spatiotemporal features using 3D convo-
lutions. Finally, a novel video representation, that can sum-
marize a video into a single image by applying rank pooling 
on the raw image pixels, was proposed by Bilen et al. [1].

Feichtenhofer et al. [10] introduced a novel architecture 
for two-stream ConvNets and studied different ways for spa-
tiotemporal fusion of the ConvNet towers. Zhu et al. [74] 
argued that videos contain one or more key volumes that 
are discriminative and most volumes are irrelevant to the 
recognition process. To this end, they proposed a unified 
deep learning framework to simultaneously identify dis-
criminative key volumes and train classifiers, while they 
discarded all irrelevant volumes. On the contrary, Li et al. 
[30] argued that learning 2D rather than 3D convolutions 
can efficiently learn meaningful spatiotemporal features for 
video action-understanding.

The LUPI paradigm was first introduced by Vapnik 
and Vashist [57] as a new classification setting to model a 
real-world learning process (i.e., teacher-student learning 
relationship) in a max-margin framework, called SVM+. 
Pechyony and Vapnik [42] formulated an algorithm for risk 
bound minimization with privileged information. Fouad 
et al. [11] proposed a combination of privileged information 
and metric learning. The privileged information was used to 
change the metric of the input data and thus any classifier 
could be used. Wand and Ji [70] also proposed two different 
loss functions that exploit privileged information and can be 
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used with any classifier. The first model encoded privileged 
information as an additional feature during training, while 
the second approach considered that privileged information 
can be represented as secondary labels.

Wang et al. [69] incorporated privileged information in a 
latent max-margin model, where the additional knowledge 
was propagated through the latent nodes and the classifica-
tion was performed from the regular data. Although this 
approach relaxes the strong assumptions of regular and priv-
ileged data relations for classification, it is limited by the 
slack variable estimation through SVM optimization. In this 
work, we address this problem by replacing the slack varia-
bles for the maximum margin violation and solve the uncon-
strained soft-margin SVM optimization problem. Smailis 
et al. [52] utilized the LUPI paradigm and the ResNet-34 
model [19] to solve the problem of carrying human actions 
in still images and introduced a challenging dataset for car-
rying actions, which is formed by a few thousand images 
extracted from YouTube videos depicting several scenarios.

Serra-Toro et al. [49] proved that successfully selecting 
information that can be treated as privileged is not a straight-
forward problem. The choice of different types of privileged 
information in the context of an object classification task 
implemented in a max-margin scheme was also discussed in 
[51]. Both regular and privileged features were considered 
of equivalent difficulty for recognizing the true class. Wang 
et al. [67] proposed a Bayesian network to learn the joint 
probability distribution of input features, output target, and 
privileged information. A combination of the LUPI frame-
work and active learning has also been explored by Vrigkas 
et al. [62] to model human activities in a semi-supervised 

scheme. Recently, the LUPI paradigm has been employed 
with applications on gender classification, facial expression 
recognition, and hand pose estimation [23, 63, 72].

3  Methodology

Our method uses HCRFs, which are defined by a chained 
structured undirected graph G = (V, E) (Fig. 2), as the proba-
bilistic framework for modeling the behavior of a subject in 
a video. During training, a classifier and the mapping from 
observations to the label set are learned. In testing, a probe 
sequence is classified into its respective state using loopy 
belief propagation (LBP) [27].

3.1  HCRF+ model formulation

We consider a labeled dataset with N video sequences con-
sisting of triplets D = {(�i,j, �

∗
i,j
, yi)}

N
i=1

 , where �i,j ∈ ℝ
M

�
×T 

is an observation sequence of length T with j = 1…T  . For 
example, �i,j might correspond to the jth frame of the ith 
video sequence. Furthermore, yi corresponds to a class label 
defined in a finite label set Y . In the context of robust learn-
ing using a privileged information paradigm, additional 
information about the observations �i is encoded in a feature 
vector �∗

i,j
∈ ℝ

M
�∗×T . Such privileged information is provided 

only at the training step and it is not available during testing. 
Note that we do not make any assumption about the form of 
the privileged data.

Fig. 2  Graphical representation 
of the chain structure model. 
The gray nodes are the observed 
features ( x

i
 ), the privileged 

information ( x∗
i
 ), and the 

unknown labels (y), respec-
tively. The white nodes are the 
unobserved hidden variables (h)

x1 x2 xTx∗
1 x∗

2 x∗
T· · ·

h1 h2 hT· · ·

y
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In particular, �∗
i,j

 does not necessarily share the same 
characteristics with the regular data but is rather computed 
as a very different kind of information, which may contain 
verbal and/or nonverbal multimodal cues such as (1) visual 
features, (2) semantic attributes, (3) textual descriptions 
of the observations, (4) image/video tags, (5) human 
poses, and (6) audio cues. The goal of LUPI is to use the 
privileged information �∗

i,j
 as a medium to construct a bet-

ter classifier for solving practical problems than one would 
learn without it. In what follows, we omit indices i and j 
for simplicity.

The HCRF+ model is a member of the exponential fam-
ily and the probability of the class label given an observa-
tion sequence is given by:

where � = [�,�] is a vector of model parameters, and 
� = {h1, h2,… , hT} , with hj ∈ H being a set of latent varia-
bles. In particular, the number of latent variables may be dif-
ferent from the number of samples, as hj may correspond to a 
substructure in an observation. Moreover, the features follow 
the structure of the graph, in which no feature may depend 
on more than two hidden states hj and hk [45]. This property 
not only captures the synchronization points between the 
different sets of information of the same state but also mod-
els the compatibility between pairs of consecutive states. 
We assume that our model follows the first-order Markov 
chain structure (i.e., the current state affects the next state). 
Finally, E(y,�|�;�) is a vector of sufficient statistics and 
A(�) is the log-partition function ensuring normalization:

Different sufficient statistics E(y|�, �∗;�) in (1) define dif-
ferent distributions. In the general case, sufficient statistics 
consist of indicator functions for each possible configuration 
of unary and pairwise terms:

where the parameters � and � are the unary and the pair-
wise weights, respectively, that need to be learned. Moreo-
ver, the potential functions correspond to the structure of 
the graphical model, as illustrated in Fig. 2. For example, a 
unary potential does not depend on more than two hidden 
variables hj and hk , and a pairwise potential may depend on 
hj and hk , which means that there must be an edge (j, k) in 
the graphical model.

The unary potential is expressed by:

(1)p(y|�, �∗;�) = ∑
�

exp (E(y,�|�, �∗;�) − A(�)) ,

(2)A(�) = log
∑
y�

∑
�

exp
(
E(y�, �|�, �∗;�)) .

(3)

E(y,�|�, �∗;�) = ∑
j∈V

Φ(y, hj, �j, �
∗
j
;�) +

∑
j,k∈E

Ψ(y, hj, hk;�) ,

and it can be seen as a state function, which consists of three 
different feature functions. The label feature function, which 
models the relationship between the label y and the hidden 
variables hj , is expressed by:

where �(⋅) is the indicator function, which is equal to 1 if 
its argument is true and 0 otherwise. The number of the 
label feature functions is |Y| × |H| . The observation feature 
function, which models the relationship between the hidden 
variables hj and the observations �j , is defined by:

The number of the observation feature functions is consid-
ered to be |Y| × |M

�
| . Finally, the privileged feature function, 

which models the relationship between the hidden variables 
hj and the privileged information �∗

j
 , has |Y| × |M

�∗
| number 

of functions and is defined by:

The pairwise potential is a transition function and represents 
the association between a pair of connected hidden states hj 
and hk and the label y. It is expressed by:

The number of the transition functions is |Y| × |H|2 . HCRF+ 
keeps a transition matrix for each label.

3.2  Maximum likelihood learning

In the training step, the optimal parameters �∗ are estimated 
by maximizing the following loss function:

The first term is the log-likelihood of the posterior prob-
ability p(y|�, �∗;�) and quantifies how well the distribution 
in Eq. (1) defined by the parameter vector � matches the 
labels y, while � is a tuning parameter. It can be rewritten as:

(4)
Φ(y, hj, �j, �

∗
j
;�) =

∑
�

�1,�(y, hj;�1,�) + �2(hj, �j;�2)

+ �3(hj, �
∗
j
;�3) ,

(5)�1,�(y, hj;�1,�) =
∑
�∈Y

∑
a∈H

�1,��(y = �)�(hj = a) ,

(6)𝜙2(hj, �j;�2) =
∑
a∈H

�⊤

2
�(hj = a)�j .

(7)𝜙3(hj, �
∗
j
;�3) =

∑
a∈H

�⊤

3
�(hj = a)�∗

j
.

(8)

Ψ(y, hj, hk;�) =
∑

� ∈ Y

a, b ∈ H

∑
�

�
�
�(y = �)�(hj = a)�(hk = b) .

(9)L(�) =

N�
i=1

1

�i
log p(yi��i, �∗i ;�) − 1

2�2
‖�‖2 .
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The second term in Eq. (9) is a Gaussian prior with variance 
�2 and works as a regularizer. The use of hidden variables 
makes the optimization of the loss function non-convex, 
thus, a global solution is not guaranteed and we can esti-
mate �∗ that are locally optimal. The loss function in Eq. 
(9) is optimized using a gradient-descent method such as the 
limited-memory BFGS (LBFGS) method [39].

3.3  Maximum margin learning

We can easily transform the optimization problem of the 
loss function defined in Eq. (9) into a max-margin prob-
lem by substituting the log of the summation over the 
hidden states and the labels in Eq. (10) with maximiza-
tion [68]. The goal is to maximize the margin between the 
score of the correct label and the score of the other labels. 
To learn the parameters �∗ , we need to minimize a loss 
function of the form:

where parameter � is a tuning parameter. Although we add 
slack variables � to max-margin optimization, they eventu-
ally vanish. We do not estimate the slacks, but we replace 
them with the Hinge loss error [18] that penalizes the loss 
when the constraints in Eq. (11) are violated:

The optimization problem in (11) is equivalent to the opti-
mization of the following unconstrained problem:

However, the quantity max(0, ⋅) is not differentiable and thus, 
Eq. (11) is hard to solve. To overcome this problem, we 

(10)

log p(yi|�i, �∗i ;�) = log
∑
�

exp(E(y,�|�i, �∗i ;�))

− log
∑

y� ≠ y,�

exp(E(y�, �|�i, �∗i ;�)) .

(11)

L(�) =

N�
i=1

1

�
i

�
i
+

1

2�2
‖�‖2

s.t. max

y
� ≠ y

i
, �

E(y�, ���
i
, �∗

i
;�) −max

�

E(y
i
, ���

i
, �∗

i
;�) ≤ �

i
− 1,

and �
i
≥ 0,

(12)

�
i

⎛
⎜⎜⎝
�) = max(0, 1 +

⎛
⎜⎜⎝

max

y
� ≠ y

i
, �

E(y�, ���
i
, �∗

i
;�)

−max
�

E(y
i
, ���

i
, �∗

i
;�)

��
.

(13)L(�) =

N�
i=1

1

�i
�i(�) +

1

2�2
‖�‖2 .

adopt the bundle method of [54], which uses sub-gradient 
descent optimization algorithm.

3.4  Estimation of regularization parameters

Both maximum likelihood and max-margin loss functions 
introduce regularization parameters that control data fidel-
ity and these regularization parameters in Eqs. (9) and (13) 
may be obtained in closed form. Here, we examine the case 
of maximum likelihood optimization as the estimation of the 
regularization parameters for the max-margin optimization is 
equivalent. We can rewrite the loss function in Eq. (9) as the 
sum of individual smoothing functionals for each of the train-
ing samples N:

where �i(�) ≡
�i

2�2
.

In general, the choice of the regularization parameter for the 
optimization of the loss function should be a function of model 
parameters � . We consider a linear function f (⋅) between �i 
and each term of the loss function:

where � is determined by the sufficient conditions for con-
vergence. From Eq. (15), the regularization parameter �i is 
computed as:

and therefore:

We assume that the combination of regular and privileged 
information is more informative for classifying human 
actions than regular information alone. Note that this is the 
intuition of using privileged information as additional fea-
tures for classification purposes and it may hold for most 
cases. Thus, the loss of classifying human actions directly 
form � should be greater or equal than classifying from both 
� and �∗:

(14)L(�) =

N�
i=1

�
log p(yi��i, �∗i ;�) − �i(�)‖�‖2

�
,

(15)
�i(�) = f

�
log p(yi��i, �∗i ;�) − �i(�)‖�‖2

�

= �i
�
log p(yi��i, �∗i ;�) − �i(�)‖�‖2

�
,

(16)
�i(�) =

log p(yi��i, �∗i ;�)
1

�i
+ ‖�‖2

,

(17)
1

𝛾i
> log p(yi��i, �∗i ;�) − 𝛼i(�)‖�‖2 .

(18)log p(yi|�i;�) ≥ log p(yi|�i, �∗i ;�) .
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We can then relax the problem and consider that Eq. (17) is 
satisfied when 1

�i
= log p(yi|�i;�) . Thus, the regularization 

parameter �i for the loss function is given by:

The regularization parameter �i may act as the within-clas-
sification balance between data and model parameters. In 
each step of the optimization process, we adaptively update 
the regularization parameter �i to provide robustness to the 
trade-off between the regularization terms.

Similarly, the regularization parameter �i for the loss func-
tion for the max-margin optimization is given by:

where �i(�) is the Hinge loss error for classifying directly 
from the regular data �:

3.5  Inference

Having computed the optimal parameters �∗ in the training 
step, our goal is to estimate the optimal label configuration 
over the testing input, where the optimality is expressed in 
terms of a cost function. To this end, we maximize the poste-
rior probability and marginalize over the latent variables � and 
the privileged information �∗:

In the general case, the training samples � and �∗ may be 
considered to be jointly Gaussian, thus the conditional distri-
bution p(�∗|�;�) is also a Gaussian distribution. In the case 
of continuous features, the continuous space of features is 
quantized to a large number of discrete values to approxi-
mate the true value of the marginalization of Eq. (22). How-
ever, to efficiently cope with outlying measurements about 
the training data, we consider that the training samples � and 
�
∗ jointly follow a Student’s t-distribution. Therefore, the 

conditional distribution p(�∗|�;�) is also a Student’s t-distri-
bution St(�∗|�;�∗,Σ∗, �∗) , where �∗ forms the first M

�∗
 com-

ponents of (�∗, �)T , � comprises the remaining M −M
�∗

 com-
ponents, �∗ is the mean vector, Σ∗ is the covariance matrix 

(19)�i(�) =
log p(yi��i, �∗i ;�)

log p(yi��i;�) + ‖�‖2 ,

(20)�i(�) =
�i(�)

�i(�) + ‖�‖2 ,

(21)

�i

⎛⎜⎜⎝
�) = max

⎛⎜⎜⎝
0, 1 + ( max

y� ≠ yi, �
E(y�, ���i;�) −max

�

E(yi, ���i;�)
⎞⎟⎟⎠

⎞⎟⎟⎠
.

(22)

y = *argmaxyp(y|�;�)
= *argmaxy

∑
�

∑
�∗

p(y,�, �∗|�;�)

= *argmaxy

∑
�

∑
�∗

p(y,�|�, �∗;�)p(�∗|�;�) .

and �∗ ∈ [0,∞) corresponds to the degrees of freedom of the 
distribution [28]. Note that by letting the degrees of freedom 
�∗ go to infinity, we can recover the Gaussian distribution 
with the same parameters. If the data contain outliers, the 
degrees of freedom parameter �∗ is weak and the mean and 
covariance of the data are appropriately weighted in order 
not to take into account the outliers. More details on how 
the parameters of the conditional Student’s t-distribution 
p(�∗|�;�) are estimated can be found in Appendix 1.

Although both conditional distributions p(y,�|�, �∗;�) 
and p(�∗|�;�) belong to the exponential family, the graph 
in Fig. 2 is cyclic, and therefore an exact solution to Eq. (22) 
is generally intractable. For this reason, approximate infer-
ence is employed for estimation of the marginal probability 
by applying the LBP algorithm [27].

4  Experimental results

We evaluated our method on four challenging publicly avail-
able datasets. Three different types of privileged information 
were used: audio signal, human pose, and semantic attribute 
annotation.

We propose four variants of our approach, called Maxi-
mum Likelihood LUPI Hidden Conditional Random Field 
(ml-HCRF+), Adaptive Maximum Likelihood LUPI Hidden 
Conditional Random Field (aml-HCRF+), Maximum Mar-
gin LUPI Hidden Conditional Random Field (mm-HCRF+), 
and Adaptive Maximum Margin LUPI Hidden Conditional 
Random Field (amm-HCRF+), depending on which learning 
method we apply (i.e., maximum likelihood or max-margin) 
and whether we automatically estimate the regularization 
parameters of the corresponding loss function or not.

4.1  Datasets

Parliament [60] This dataset is a collection of 228 video 
sequences, depicting political speeches in the Greek par-
liament, at a resolution of 320 × 240 pixels at 25 fps. The 
video sequences were manually labeled with one of three 
behavioral labels: friendly, aggressive, or neutral.

TV human interaction (TVHI) [41] This dataset consists 
of 300 video sequences collected from over 20 different TV 
shows. The video clips contain four kinds of interactions: 
handshakes, high fives, hugs, and kisses, equally split into 
50 video sequences each, while the remaining 100 video 
clips do not contain any of the aforementioned interactions.

SBU Kinect Interaction (SBU) [73] This dataset contains 
approximately 300 video sequences depicting two-person 
interactions captured by a Microsoft Kinect sensor. The data-
set contains eight different classes including approaching, 



 Pattern Analysis and Applications

1 3

departing, pushing, kicking, punching, exchanging objects, 
hugging, and shaking hands, which are performed by seven 
different persons. It also contains three-dimensional coordi-
nates of 15 joints for each person at each frame.

Unstructured social activity attribute (USAA) [12] The 
USAA dataset includes eight different semantic class videos 
of social occasions such as birthday party, graduation party, 
music performance, non-music performance, parade, wed-
ding ceremony, wedding dance, and wedding reception. It 
contains around 100 videos per class for training and test-
ing. Each video is annotated with 69 attributes, which can 
be divided into five broad classes: actions, objects, scenes, 
sounds, and camera movement.

4.2  Implementation details

Deep learning model In our experiments, we used CNNs 
for both end-to-end classification and feature extraction. We 
employed the pre-trained model of Tran et al. [55], which is 
a 3D ConvNet (C3D) as it can be seen in Fig. 3. We selected 
this model because it was trained on a very large dataset 
(Sports 1M [24]), which provides good features for the activ-
ity recognition task, especially in our case where the size 
of the training data is small, making deep learning models 
prone to overfitting.

Because both the Parliament and SBU datasets are fairly 
small datasets, only a few parameters had to be trained to 
avoid overfitting. Particularly, we replaced the fully con-
nected layers of the pre-trained model with a new fully con-
nected layer of size 1024 and trained the additional layer 
coupled with a softmax layer on top of it. For the TVHI 
dataset, we fine-tuned the last group of convolutional lay-
ers, while for the USAA dataset, we fine-tuned the last two 
groups. Each group has two convolutional layers, while we 
added a new fully connected layer of size 256 for the TVHI 
and 1024 for the USAA datasets, respectively. For the opti-
mization process, we used mini-batch stochastic gradient 
descent (SGD) with momentum. The size of the mini-batch 
was set to 16 and we used a constant momentum of 0.9. 

For both the Parliament and SBU datasets, the learning rate 
was initialized to 0.01 and it was decayed by a factor of 0.1, 
while the total number of training epochs was 1, 000. For 
the TVHI and USAA datasets, we used a constant learning 
rate of 10−4 , and the total number of training epochs was 500 
and 250, respectively. For all datasets, we added a dropout 
layer after the new fully connected layer with a probability 
of 0.5. Also, we performed data augmentation on each batch 
online, and 16 consecutive frames were randomly selected 
for each video. These frames were randomly cropped, result-
ing in frames of size 112 × 112 and then flipped with prob-
ability 0.5. For the classification task, we used the centered 
112 × 112 crop on the frames of each video sequence. Then, 
for each video, we extracted 10 random clips of 16 frames 
and averaged their predictions. Finally, to avoid overfitting, 
we used early stopping and extracted C3D features from the 
newly added fully connected layer.

Privileged information For our experiments on Parlia-
ment and TVHI datasets, we used audio features as privi-
leged information. More, specifically, we employed the 
mel-frequency cepstral coefficients (MFCC) [46] features 
and their first- and second-order derivatives. The audio 
signal was sampled at 16 KHz and processed over 10 ms 
using a Hamming window with a 25% overlap. The audio 
feature vector consisted of a collection of 13 MFCC coef-
ficients along with the first and second derivatives form-
ing a 39-dimensional audio feature vector. Furthermore, for 
the SBU dataset, privileged information is represented by a 
15-dimensional feature vector capturing human pose infor-
mation and information from the joints that correspond to 
joint distance, joint motion, plane, normal plane, velocity, 
and normal velocity as described in [73]. Finally, for the 
USAA dataset, we used the provided attribute annotation as 
privileged information to characterize each class not with 
an individual label, but with a feature vector of semantic 
attributes.

Hand-crafted feature selection For the evaluation of our 
method, we used spatiotemporal interest points (STIP) [29] 
as our base video representation. First, we extracted local 

Fig. 3  Illustration of the 3D ConvNet architecture [55]. The model 
has eight convolutional layers, five max-pooling layers, and two fully 
connected layers followed by the output layer, which is a softmax 
classifier that classifies videos in 487 categories [24]. Different colors 
are used for different types of layers for better understanding. The net 
takes as input a volume of 16 frames with a height and a width of size 

112. Convolutional layers perform 3D convolutions using 3D ker-
nels and max-pooling layers perform 3D pooling using 3D receptive 
fields. In convolutional layers, the number of feature maps is denoted 
before symbol “@” and follows the size of the kernels. In pooling 
layers, the size of each receptive field is shown. In fully connected 
layers, it is denoted the number of hidden units
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space-time features at a rate of 25 fps using a 72-dimen-
sional vector of HoG and 90-dimensional vector of HoF 
feature descriptors [26] for each STIP, which captures the 
human motion between frames. These features were selected 
because they can efficiently and compactly capture salient 
visual motion patterns. Besides, for the TVHI dataset, we 
also used the provided annotations, which are related to the 
locations of the persons in each video clip, including the 
head orientations of each subject in the clips, the pair of 
subjects who interact with each other, and the corresponding 
labels. Moreover, for the USAA dataset as a representation 
of the video data, we used the provided low-level features, 
which correspond to SIFT [35], STIP, and MFCC features.

Model selection The proposed model was trained by 
varying the number of hidden states from 3 to 20, with 
a maximum of 400 iterations for the termination of the 
LBFGS optimization method. The L2 regularization scale 
term � for the non-adaptive methods was set to 10k , with 
k ∈ {−3,… , 3} . The evaluation of our method was per-
formed using fivefold cross-validation to split the datasets 

Our goal is to find a set of weights � ∈ ℝ
d×p , which relates 

the privileged features to the regular features by minimiz-
ing a distance function across the input samples and their 
attributes:

where ‖�‖2 is a regularization term and � controls the degree 
of the regularization, which was chosen to give the best solu-
tion by using cross-validation with � ∈ [10−4, 1] . Following 
a constrained least squares (CLS) optimization problem and 
minimizing ‖�‖2 subject to �� = �

∗ , Eq. (23) has a closed 
form solution � =

(
�
T
� + �I

)−1
�
T
�
∗ , where I is the identity 

matrix. Note that the minimization of Eq. (23) is fast since 
it needs to be solved only once during training. Finally, we 
obtain the prediction f of the privileged features by multiply-
ing the regular features with the learned weights f = � ⋅ � . 
The main steps of the proposed method are summarized in 
Algorithm 1.

(23)*argmin�‖�� − �
∗‖2 + �‖�‖2 ,

into training and test sets, and the average results over all the 
examined configurations are reported.

4.3  Multimodal feature fusion

One drawback of combining features of different modalities 
is the different probability distribution that each modality 
may have. Thus, instead of directly combining multimodal 
features, one may employ canonical correlation analysis 
(CCA) [17] to exploit the correlation between the different 
modalities by projecting them onto a common subspace so 
that the correlation between the input vectors is maximized 
in the projected space. In this paper, we followed a different 
approach. Our model can learn the relationship between the 
input data and the privileged features. To this end, we jointly 
calibrate the different modalities by learning a multiple out-
put linear regression model [40]. Let � ∈ ℝ

M×d be the input 
raw data and �∗ ∈ ℝ

M×p be the set of privileged features. 

4.4  Comparisons using deep learning features

In this section, we compared the proposed HCRF+ method 
with the LSTM networks [21], since it has been proven that 
they provide good performance in several sequential clas-
sification tasks such as image description and activity rec-
ognition [8]. Although a promising methodology is to train a 
CNN stacked with an LSTM layer on top [8] for end-to-end 
feature extraction and sequential classification, our limited 
size datasets prevented us from training such a model due 
to overfitting. To address this issue, we trained an LSTM 
layer with a softmax layer on top, of the features extracted 
from the pre-trained CNN model. Specifically, we added a 
dropout layer on the LSTM’s hidden units and an L2 regu-
larization on the softmax units. For the estimation of the 
hyperparameters, we performed a grid search with fivefold 
cross-validation to optimize the learning rate, the number of 
hidden units, the dropout rate, and the weight decay factor 
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of the L2 regularizer. We trained the LSTM model for 100 
epochs using the Adam optimizer [25] with early stopping.

The comparison of the proposed approach with state-of-
the-art methods using the C3D features is summarized in 
Table 1. In particular, to show the benefit of using robust 
privileged information, we compared our method both with 
state-of-the-art methods with and without incorporating 
the LUPI paradigm. Also, to demonstrate the efficacy of 

the robust privileged information to the problem of human 
activity recognition, we compared it with ordinary SVM 
and HCRF, as if they could access both the regular and the 
privileged information at test time. This means that we do 
not differentiate between regular and privileged informa-
tion, but use both forms of information as regular to infer 
the underlying class label instead. Furthermore, for the 
SVM+ and SVM, we consider a one-versus-one decompo-
sition of a multi-class classification scheme and average the 
results for every possible configuration. Finally, the optimal 
parameters for the SVM and SVM+ were selected using 
cross-validation.

It is worth noting that privileged information works in 
favor of the classification task in all cases. The ml-HCRF+ 
variant achieves the highest results among all other meth-
ods for the Parliament, TVHI, and SBU datasets, while 
for the USAA dataset, the amm-HCRF+ variant achieves 
the highest recognition accuracy ( 96.4% ). Moreover, the 
improvement in the accuracy of the proposed model con-
cerning the C3D classification for the Parliament, TVHI, 
and USAA datasets was approximately 15% , 33% , and 29% , 
respectively. This improvement can be explained by the 
fact that the C3D model uses a linear classifier in the soft-
max layer, while the proposed approach is a more sophisti-
cated model that can efficiently handle sequential data in a 
more principled way. Also, the performance improvement, 
brought by the LSTM compared with the 3D ConvNet, val-
idates the ability of LSTMs to capture long-term depend-
encies in human activities as LSTMs have a memory of 
previous activity states and can better model their complex 
dynamics. Nonetheless, the proposed model outperforms 
the LSTM, for all datasets, a fact that supports our main 

Table 1  Comparison of the classification accuracies ( % ) on Parlia-
ment [60], TVHI [41], SBU [73], and USAA [12] datasets using C3D 
features

Results highlighted with bold values indicate statistically significant 
improvement using paired t test

Method Parliament TVHI SBU USAA

Methods without privileged information
HCRF [45] 84.4 ± 0.8 89.6 ± 0.5 91.1 ± 0.4 91.6 ± 0.8

SVM [2] 89.9 ± 0.5 90.0 ± 0.3 92.8 ± 0.2 91.9 ± 0.3

3D ConvNet (C3D) 
[55]

78.1 ± 0.4 60.5 ± 1.1 94.2 ± 0.8 67.4 ± 0.6

LSTM [21] 88.3 ± 0.8 88.4 ± 1.5 94.7 ± 0.7 91.3 ± 1.7

Methods with privileged information
SVM+ [57] 90.0 ± 0.3 92.5 ± 0.4 94.8 ± 0.3 92.3 ± 0.3

Wang and Ji [70] 83.5 ± 0.4 88.8 ± 0.2 92.7 ± 0.4 92.8 ± 0.2

Wang et al. [69] 84.4 ± 0.6 85.0 ± 1.2 91.1 ± 1.3 93.2 ± 1.2

Sharmanska et al. 
[51]

81.8 ± 0.2 90.0 ± 0.1 92.9 ± 0.4 93.5 ± 0.2

ml-HCRF+ ��.� ± �.� ��.� ± �.� ��.� ± �.� 93.9 ± 0.9

aml-HCRF+ ��.� ± �.� 92.5 ± 1.1 92.9 ± 0.4 95.9 ± 1.3

mm-HCRF+ 88.9 ± 0.9 92.5 ± 0.7 93.6 ± 1.1 95.2 ± 1.0

amm-HCRF+ 86.7 ± 1.2 90.0 ± 0.8 94.6 ± 1.0 ��.� ± �.�

Fig. 4  Confusion matrices 
of the proposed ml-HCRF+ 
approach for a the Parliament 
[60], b the TVHI [41], c the 
SBU [73], and d the USAA [12] 
datasets using the CNN features
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hypothesis that the LUPI paradigm may be beneficial for 
human activity recognition.

The corresponding confusion matrices of the proposed 
method for all datasets, using the C3D features, are depicted 
in Fig. 4. The combination of privileged information with 
the feature representation learned from the C3D model 
resulted in very small inter- and intra-class classification 
errors for all datasets. For the SBU dataset, only a few 
classes are confused with each other (e.g., the class kick 
versus the class push), while four out of the eight classes 
were perfectly recognized.

A comparison of the mean per-class accuracies of the 
proposed approach with state-of-the-art methods on all four 
datasets is illustrated in Fig. 5. On the Parliament dataset, 
the proposed ml-HCRF+ method has the highest recognition 
accuracy ( 97.6% ) among the other variants of the proposed 
model, while it achieves the same accuracy as the standard 
HCRF model. It is also worth mentioning that our method 
can increase the recognition accuracy by nearly 38% con-
cerning the methods of Wang and Ji [70] and the method 
of Sharmanska et al. [51], which also incorporate the LUPI 
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Fig. 5  Mean per-class accuracies showing the performance of the proposed method with respect to the state of the art for a the Parliament [60], 
b the TVHI [41], c the SBU [73], and d the USAA [12] datasets

paradigm. This significantly high increase in recognition 
accuracy indicates the strength of the proposed method. For 
the TVHI dataset, we significantly managed to increase the 
classification accuracy by approximately 10% , concerning 
the LUPI-based SVM+ and Wang and Ji [70] approaches, 
as our approach achieves very high recognition accuracy 
( 84.9% ). The improvement in our method compared with the 
method of Sharmanska et al. [51] and the methods that do 
not use privileged information was even higher. In Fig. 5c, 
the ml-HCRF+ approach achieved the highest accuracy 
( 85.4% ), where the improvement over the standard HCRF 
model is nearly 4% . Comparing our method with methods 
that do not use privileged information, we increased the clas-
sification accuracy in all cases. For the USAA dataset, the 
combination of both raw data and attribute representation 
of human activities significantly outperformed the SVM+ 
baseline and the method of Wang and Ji [70] by increas-
ing the classification accuracy by approximately 11% for the 
amm-HCFR+ model. An improvement of 3% concerning 
the methods of Sharmanska et al. [51] and Wang et al. [69] 
was also achieved.
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Although the adaptive HCRF+ approaches may per-
form worse than the non-adaptive variants, they can still 
achieve better results than the majority of the state-of-the-art 

methods. One reason for this is that the estimation of the 
regularization parameters for the adaptive variants depends 
on the input features. Features that belong to the background 
may influence the estimation of the regularization param-
eters as they may serve as background noise. Also, the Par-
liament dataset contains large intra-class variabilities. For 
example, the interaction between an arm lift and the raise 
in the voice may not exclusively be combined together as 
some features may act as outliers and affect the classification 
accuracy. However, it is interesting to observe that, for the 
USAA dataset, the adaptive variants of the proposed method 
perform better than their non-adaptive counterparts. Auto-
matic estimation of the regularization parameters provides 
more flexibility to the model as it allows the model to adjust 
its behavior according to the training data.

4.5  Comparisons using hand‑crafted features

A comparison of the proposed approach with state-of-the-art 
methods using hand-crafted features is depicted in Table 2. 
The proposed ml-HCRF+ method has the highest recog-
nition accuracy among the other variants of the proposed 
model.

Also, note that the improvement in accuracy using the 
C3D features (Table 1) with respect to the hand-crafted fea-
ture classification (Table 2), for all datasets, indicates that 

Table 2  Comparison of the classification accuracies ( % ) on Parlia-
ment [60], TVHI [41], SBU [73], and USAA [12] datasets using 
hand-crafted features

Results highlighted with bold values indicate statistically significant 
improvement over the second-best method using paired t test

Method Parliament TVHI SBU USAA

Methods without privileged information
HCRF ��.� ± 0.6 81.3 ± 0.7 81.4 ± 0.8 54.0 ± 0.8

Wang and Schmid 
[65]

66.6 ± 0.5 76.1 ± 0.4 79.6 ± 0.4 55.6 ± 0.1

SVM [2] 72.6 ± 0.4 75.9 ± 0.6 79.4 ± 0.4 47.4 ± 0.1

Methods with privileged information
SVM+ [57] 78.4 ± 0.2 75.0 ± 0.2 79.4 ± 0.3 48.5 ± 0.1

Wang and Ji [70] 59.2 ± 0.2 74.8 ± 0.2 62.4 ± 0.3 48.5 ± 0.2

Wang et al. [69] 96.9 ± 1.1 84.4 ± 1.1 83.7 ± 1.6 55.3 ± 0.9

Sharmanska et al. 
[51]

57.7 ± 0.4 65.2 ± 0.1 56.3 ± 0.2 56.3 ± 0.2

ml-HCRF+ ��.� ± �.� ��.� ± �.� ��.� ± �.� 58.1 ± 1.4

aml-HCRF+ 83.5 ± 1.3 83.6 ± 1.1 79.8 ± 1.3 57.5 ± 1.4

mm-HCRF+ 96.5 ± 0.9 83.6 ± 0.6 83.7 ± 0.5 56.8 ± 0.6

amm-HCRF+ 82.3 ± 1.3 82.9 ± 0.8 82.8 ± 1.3 ��.� ± �.�
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Fig. 6  Confusion matrices of the proposed ml-HCRF+ approach for a the Parliament [60], b the TVHI [41], c the SBU [73], and d the USAA 
[12] datasets
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CNNs may efficiently extract informative features without 
any need to hand-design them.

The resulting confusion matrices of the best performing 
variant are depicted in Fig. 6. It is worth mentioning that 
for both the Parliament and the TVHI datasets, the classifi-
cation errors between different classes are relatively small. 
It is interesting to observe that for the USAA dataset, the 

different classes may be strongly confused. For example, the 
class wedding ceremony is confused with the class gradu-
ation party, and the class wedding reception is confused 
with the class non-music performance. This is because the 
different classes may share the same attribute representation 
as different videos may have been captured under similar 
conditions.

4.6  Ablation studies

To complete the study, we also trained an HCRF model that 
uses only the regular or only the privileged information for 
both training and testing. In Table 3, we investigate to what 
extent each type of information affects the final performance. 
If only privileged information is used as regular features 
for classification, the recognition accuracy is notably lower 
than when using only the regular information for the clas-
sification task. In general, when privileged information alone 
is used as regular information may not be enough for the 
correct classification of an action label into its respective 
category. This is because it is commonplace that finding 
proper privileged information is not always a straightforward 
problem.

To our surprise, we observed that, for the SBU dataset, 
even though for some classes we were able to perfectly rec-
ognize the underlying activity, the model failed though to 
recognize some of the classes as the rate of false positives 

Table 3  Ablation studies to assess the impact of each type of infor-
mation on the final result using the standard HCRF model

The checkmark corresponds to the usage of specific information for 
training and testing

Dataset Regular Privileged Accuracy

Parliament [60] ✓ 67.1 ± 1.4

✓ 72.7 ± 1.8

✓ ✓ 97.6 ± 0.7

TVHI [41] ✓ 60.9 ± 1.3

✓ 35.9 ± 1.5

✓ ✓ 81.3 ± 0.7

SBU [73] ✓ 69.8 ± 1.1

✓ 62.5 ± 1.3

✓ ✓ 81.4 ± 0.8

USAA [12] ✓ 55.5 ± 0.9

✓ 37.4 ± 1.0

✓ ✓ 54.0 ± 0.8

Fig. 7  Comparison of the 
recognition accuracy of the 
four different variants of the 
proposed method and standard 
HCRF model with respect to the 
number of hidden states for a 
the Parliament [60], b the TVHI 
[41], c the SBU [73], and d the 
USAA [12] datasets. The text 
in parentheses in the legend of 
each figure corresponds to the 
type of information used both 
for training and testing 2 4 6 8 10 12 14
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may reach 100%. This reinforces the fact that different 
modalities may help in constructing better classifiers.

Note that for the USAA dataset, when privileged informa-
tion is used as regular, the performance of the model drops 
in terms of accuracy by 18% . We believe that this is because 
the use of binary features for training and testing may cause 
bias. However, the combination of regular and privileged 
information during training and testing does not suffer from 
the biasing problem due to feature calibration and their pro-
jection to a common subspace using Eq. (23).

The classification accuracy to the number of hidden 
states is depicted in Fig. 7. We may observe that all four 
variants have a similar behavior as the number of hidden 
states increases. It is clear that when privileged informa-
tion is used, in the vast majority of the cases (38 out of 
45 cases), all variants of HCRF+ perform better than the 
standard HCRF model. In Fig. 7, the HCRF+ variants and 
the standard HCRF model suffer from large fluctuations as 
the number of hidden states increases. This is because the 
number of hidden states plays a crucial role in the recogni-
tion process. Many hidden states may lead to model overfit-
ting, while few hidden states may cause underfitting. This 
would be resolved by the estimation of the optimal number 
of hidden states during learning, but this is not straightfor-
ward for this model. We may also observe that the perfor-
mance of each modality alone is kept significantly lower 
for all configurations of hidden states, which reinforces the 
fact that privileged information may help to construct better 
classification models.

The behavior of the proposed adaptive model as a func-
tion of the regularization parameters and the number of 
hidden states is depicted in Fig. 8. To be consistent with 
the non-adaptive methods, the real-valued regularization 
parameters were quantized from the continuous to the dis-
crete space with �(�) = 10k, k ∈ {−2,… , 2} and the results 
were averaged. We may observe that the behavior of the 
recognition accuracy is smooth for the different values of 
�(�) and the number of hidden states, which indicates that 
the automatic estimation of �(�) is robust.

5  Discussion

Our method can robustly use privileged information in a 
more efficient way than the SVM+ and the other LUPI-based 
methods, by exploiting the hidden dynamics between the 
video clips and the privileged information. We may also 
observe that the proposed method outperforms all meth-
ods that do not incorporate privileged information during 
learning. Since the combination of multimodal data falls 
natural to the human perception of understanding complex 
activities, the incorporation of such information constitutes a 

strong attribute for discriminating between different classes, 
rather than learning each modality separately.

Statistical significance tests To provide statistical evi-
dence of the recognition accuracy, we computed the p values 
of the obtained results to the compared methods. Results 
highlighted with bold values in Tables 1 and 2 indicate sta-
tistically significant improvement (p values were less than 
the significance level of 0.05) over the second-best method 
using paired t test. In general, we may conclude that the 
improvements obtained by our model are statistically sig-
nificant and not due to chance.

Computational complexity The proposed method uses 
the same sufficient statistics as HCRF, and the computa-
tional complexity is similar to HCRF. The complexity of 
our method is determined by the complexity of the corre-
sponding inference problem and is quadratic to the number 
of hidden states.

5.1  Why is privileged information important?

Selecting which features can act as privileged information 
is not an easy task. The performance of LUPI-based classi-
fiers relies on the delicate relationship between the regular 
and the privileged information. Also, privileged informa-
tion is costly or difficult to obtain with respect to producing 
additional regular training examples [49]. In general, when 
privileged information alone is used as regular, it may not 
be sufficient for the correct classification of an action label 
into its respective category, since finding proper privileged 
information is not always a straightforward process.

The scope of our approach is not to achieve the best 
results possible but to investigate to what extent privileged 
information can be beneficial under the same evaluation pro-
tocol. The main strength of the proposed method is that it 
achieves good classification results when the LUPI frame-
work is incorporated with the standard HCRF model.

In the era of deep learning, significant progress has been 
made in learning good representations of the data and a deep 
learning-based technique is a way to go. However, in cases 
where datasets are small in size, which is true in our case, 
and the distribution of the data is completely different from 
the data that the existing pre-trained models were trained on, 
then privileged information can be very helpful. Nonethe-
less, one may fine-tune the deep neural model and extract 
meaningful feature representations. This enhances our 
choice to use deep features with the proposed HCRF+ model 
as the experimental results indicate significant improvement 
when these features are used. Thus, the answer to the ques-
tion “is privileged information necessary?” is affirmative. 
For example, in many medical applications, where pre-
trained deep learning models are still not available, privi-
leged information is the best solution to go.
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Fig. 8  Recognition performance of the proposed maximum likelihood 
(left-column) and max-margin (right-column) variants as function of 
the regularization parameter and the number of hidden states for a the 

Parliament [60], b the TVHI [41], c the SBU [73], and d the USAA 
[12] datasets
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6  Conclusion

In this paper, we addressed the problem of human activ-
ity categorization in a supervised framework and proposed 
a novel probabilistic classification model based on robust 
learning using a privileged information paradigm, called 
HCRF+. Our model is made robust using Student’s t-dis-
tributions to model the conditional distribution of the privi-
leged information. We proposed two variants for training 
in the LUPI framework. The first variant uses maximum 
likelihood and the second uses maximum margin learning.

Using auxiliary information about the input data, we were 
able to produce better classification results than the standard 
HCRF [45] approach. We evaluated the performance of our 
method on four publicly available datasets and tested various 
forms of privileged information. The experimental results 
indicated that robust privileged information along with the 
regular input data for training the model ameliorates the rec-
ognition performance. We demonstrated improved results 
concerning the state-of-the-art LUPI framework especially 
when C3D features are employed.

According to our results, the proposed method and its 
variants achieved notably higher performance than the 
majority of the compared classification schemes. We were 
able to flexibly understand multimodal human activities 
with high accuracy when not the same amount of informa-
tion is available during testing. By automatically estimating 
the regularization parameters during learning, we managed 
to achieve high recognition accuracy with less effort than 
standard cross-validation-based classification schemes.
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Appendix: Conditional distribution 
of the privileged information

Recall that � ∈ ℝ
M

�
×T is an observation sequence of length 

T and �∗ ∈ ℝ
M

�∗×T corresponds to the privileged information 
of the same length. We partition the original set 

(�∗, �)T ∈ ℝ
M×T into two disjoint subsets, where �∗ forms 

the first M
�∗

 components of (�∗, �)T ∈ ℝ
M×T and � comprises 

the remaining M −M
�
 components. If the joint distribution 

p(�, �∗;�) follows a Student’s t-law, with mean vector 
� =

(
�
�∗
,�

�

)T  , a real, positive definite, and symmetric 

M ×M covariance matrix Σ =

(
Σ
�∗�∗

Σ
�∗�

Σ
��∗

Σ
��

)
 and � ∈ [0,∞) 

corresponds to the degrees of freedom of the distribution 
[28], then the conditional distribution p(�|�∗;�) is also a 
Student’s t-distribution:

The mean �∗ , the covariance matrix Σ∗ , and the degrees 
of freedom �∗ of the conditional distribution p(�∗|�;�) are 
computed by the respective parts of � and Σ:

The parameters (�,Σ, �) of the joint Student’s t-distribution 
p(�∗, �;�) , which are defined by the corresponding partition 
of the vector (�∗, �)T , are estimated using the expectation-
maximization (EM) algorithm [28]. Then, the parameters of 
the conditional distribution p(�∗|�;�) are computed using 
Eqs. (25)–(27).

It is worth noting that by letting the degrees of freedom 
�∗ to go to infinity, we can recover the Gaussian distribution 
with the same parameters. If the data contain outliers, the 
degrees of freedom parameter �∗ are weak and the mean and 
covariance of the data are appropriately weighted in order 
not to take into account the outliers.

References

 1. Bilen H, Fernando B, Gavves E, Vedaldi A, Gould S (2016) 
Dynamic image networks for action recognition. In: Proceedings 
of the IEEE Computer Society conference on computer vision and 
pattern recognition, Las Vegas, NV

 2. Bishop CM (2006) Pattern recognition and machine learning. 
Springer, Berlin

(24)

p(�∗|�;�) = St(�∗;�∗,Σ∗, �∗)

=
Γ((�∗ +M)∕2)|Σ

��
|1∕2

(��∗)M�
∕2Γ

((
�∗ +M

�

)
∕2

)|Σ∗|1∕2

×

[
1 +

1

�∗
�
TΣ−1

��
�

] (�∗+M�)
2

[
1 +

1

�∗
ZTΣ∗−1Z

] (�∗+M)
2

.

(25)�∗ = �
�∗
− Σ

�∗�
Σ−1
��

(
� − �

�

)
,

(26)
Σ∗ =

�
�∗
+
(
� − �

�

)T
Σ−1
��

(
� − �

�

)
�
�∗
+M

�∗

×
(
Σ
�∗�∗

− Σ
�∗�

Σ−1
��
Σ
��∗

)
,

(27)�∗ = �
�∗
+M

�∗
.



Pattern Analysis and Applications 

1 3

 3. Carreira J, Zisserman A (2017) Quo vadis, action recognition? A 
new model and the kinetics dataset. In: Proceedings of the IEEE 
Computer Society conference on computer vision and pattern rec-
ognition, Honolulu, Hawaii

 4. Choutas V, Weinzaepfel P, Revaud J, Schmid C (2018) PoTion: 
pose motion representation for action recognition. In: Proceedings 
of the IEEE Computer Society conference on computer vision and 
pattern recognition, Salt Lake City, UT

 5. Cohen I, Cozman FG, Sebe N, Cirelo MC, Huang TS (2004) Sem-
isupervised learning of classifiers: theory, algorithms, and their 
application to human–computer interaction. IEEE Trans Pattern 
Anal Mach Intell 26(12):1553–1566

 6. Crasto N, Weinzaepfel P, Alahari K, Schmid C (2019) Mars: 
motion-augmented RGB stream for action recognition. In: Pro-
ceedings of the IEEE Computer Society conference on computer 
vision and pattern recognition, Long Beach, CA

 7. De Geest R, Tuytelaars T (2018) Modeling temporal structure 
with LSTM for online action detection. In: Proceedings of the 
IEEE winter conference on applications of computer vision, Lake 
Tahoe, NV/CA

 8. Donahue J, Hendricks LA, Guadarrama S, Rohrbach M, Venugo-
palan S, Saenko K, Darrell T (2015) Long-term recurrent convo-
lutional networks for visual recognition and description. In: Pro-
ceedings of the IEEE Computer Society conference on computer 
vision and pattern recognition, Boston, MA

 9. Feichtenhofer C, Pinz A, Wildes RP, Zisserman A (2018) What 
have we learned from deep representations for action recogni-
tion? In: Proceedings of the IEEE Computer Society conference 
on computer vision and pattern recognition, Salt Lake City, UT

 10. Feichtenhofer C, Pinz A, Zisserman A (2016) Convolutional two-
stream network fusion for video action recognition. In: Proceed-
ings of the IEEE Computer Society conference on computer vision 
and pattern recognition, Las Vegas, NV

 11. Fouad S, Tino P, Raychaudhury S, Schneider P (2013) Incorporat-
ing privileged information through metric learning. IEEE Trans 
Neural Netw Learn Syst 24(7):1086–1098

 12. Fu Y, Hospedales TM, Xiang T, Gong S (2012) Attribute learning 
for understanding unstructured social activity. In: Proceedings of 
the 12th European conference on computer vision, lecture notes 
in computer science, Florence, Italy, vol 7575

 13. Gao Z, Li S, Zhu Y, Wang C, Zhang H (2017) Collaborative sparse 
representation leaning model for RGBD action recognition. J Vis 
Commun Image Represent 48:442–452

 14. Gao Z, Xuan H, Zhang H, Wan S, Choo KR (2019) Adaptive 
fusion and category-level dictionary learning model for multiview 
human action recognition. IEEE Internet Things J 6(6):9280–9293

 15. Garcia NC, Morerio P, Murino V (2018) Modality distillation 
with multiple stream networks for action recognition. In: Proceed-
ings of the European conference on computer vision, Munich, 
Germany

 16. Guadarrama S, Krishnamoorthy N, Malkarnenkar G, Venugopalan 
S, Mooney RJ, Darrell T, Saenko K (2013) Youtube2text: rec-
ognizing and describing arbitrary activities using semantic hier-
archies and zero-shot recognition. In: Proceedings of the IEEE 
international conference on computer vision, Sydney, Australia

 17. Hardoon DR, Szedmak SR, Shawe-Taylor JR (2004) Canonical 
correlation analysis: an overview with application to learning 
methods. Neural Comput 16(12):2639–2664

 18. Hastie T, Rosset S, Tibshirani R, Zhu J (2004) The entire regu-
larization path for the support vector machine. J Mach Learn Res 
5:1391–1415

 19. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for 
image recognition. In: Proceedings of the IEEE Computer Soci-
ety conference on computer vision and pattern recognition, Las 
Vegas, NV, pp 770–778

 20. Hoai M, Zisserman A (2014) Talking heads: detecting humans 
and recognizing their interactions. In: Proceedings of the IEEE 
Computer Society conference on computer vision and pattern rec-
ognition, Columbus, OH

 21. Hochreiter S, Schmidhuber J (1997) Long short-term memory. 
Neural Comput 9(8):1735–1780

 22. Jin L, Li Z, Tang J (2020) Deep semantic multimodal hashing 
network for scalable image-text and video-text retrievals. IEEE 
Trans Neural Netw Learn Syst. https ://doi.org/10.1109/TNNLS 
.2020.29970 20

 23. Kakadiaris I, Sarafianos N, Nikou C (2016) Show me your body: 
gender classification from still images. In: Proceedings of the 
IEEE international conference on image processing, Phoenix, AZ

 24. Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, Fei-
Fei L (2014) Large-scale video classification with convolutional 
neural networks. In: Proceedings of the IEEE Computer Society 
conference on computer vision and pattern recognition, Colum-
bus, OH

 25. Kingma DP, Ba J (2014) Adam: a method for stochastic optimiza-
tion. CoRR abs/1412.6980

 26. Kläser A, Marszałek M, Schmid C (2008) A spatio-temporal 
descriptor based on 3D-gradients. In: Proceedings of the British 
machine vision conference. University of Leeds, Leeds, UK

 27. Komodakis N, Tziritas G (2007) Image completion using efficient 
belief propagation via priority scheduling and dynamic pruning. 
IEEE Trans Image Process 16(11):2649–2661

 28. Kotz S, Nadarajah S (2004) Multivariate t distributions and their 
applications. Cambridge University Press, Cambridge

 29. Laptev I (2005) On space-time interest points. Int J Comput Vis 
64(2–3):107–123

 30. Li C, Zhong Q, Xie D, Pu S (2019) Collaborative spatiotemporal 
feature learning for video action recognition. In: Proceedings of 
the IEEE Computer Society conference on computer vision and 
pattern recognition, Long Beach, CA

 31. Li Y, Li Y, Vasconcelos N (2018) RESOUND: towards action 
recognition without representation bias. In: Proceedings of the 
European conference on computer vision, Munich, Germany

 32. Liu A, Su Y, Jia P, Gao Z, Hao T, Yang Z (2015) Multiple/
single-view human action recognition via part-induced multi-
task structural learning. IEEE Trans Cybern 45(6):1194–1208

 33. Liu J, Kuipers B, Savarese S (2011) Recognizing human actions 
by attributes. In: Proceedings of the IEEE Computer Society 
conference on computer vision and pattern recognition, Colo-
rado Springs, CO

 34. Lopez-Paz D, Bottou L, Schölkopf B, Vapnik V (2016) Unifying 
distillation and privileged information. In: Proceedings of the 
5th international conference on learning representations, San 
Juan, Puerto Rico

 35. Lowe DG (2004) Distinctive image features from scale-invariant 
keypoints. Int J Comput Vis 60(2):91–110

 36. Luo Z, Hsieh JT, Jiang L, Carlos Niebles J, Fei-Fei L (2018) 
Graph distillation for action detection with privileged modali-
ties. In: Proceedings of the European conference on computer 
vision, Munich, Germany

 37. Luvizon DC, Picard D, Tabia H (2018) 2D/3D pose estimation 
and action recognition using multitask deep learning. In: Pro-
ceedings of the IEEE Computer Society conference on computer 
vision and pattern recognition, Salt Lake City, UT

 38. Marín-Jiménez MJ, noz Salinas RM, Yeguas-Bolivar E, de la 
Blanca NP (2014) Human interaction categorization by using 
audio-visual cues. Mach Vis Appl 25(1):71–84

 39. Nocedal J, Wright SJ (2006) Numerical optimization. Springer 
series in operations research and financial engineering, 2nd edn. 
Springer, New York

 40. Palatucci M, Pomerleau D, Hinton GE, Mitchell TM (2009) 
Zero-shot learning with semantic output codes. In: Proceedings 

https://doi.org/10.1109/TNNLS.2020.2997020
https://doi.org/10.1109/TNNLS.2020.2997020


 Pattern Analysis and Applications

1 3

of the advances in neural information processing systems, Van-
couver, British Columbia, Canada

 41. Patron-Perez A, Marszalek M, Reid I, Zisserman A (2012) 
Structured learning of human interactions in TV shows. IEEE 
Trans Pattern Anal Mach Intell 34(12):2441–2453

 42. Pechyony D, Vapnik V (2010) On the theory of learning with 
privileged information. In: Proceedings of the annual confer-
ence on neural information processing systems, Vancouver, 
British Columbia, Canada

 43. Peel D, Mclachlan GJ (2000) Robust mixture modelling using 
the t distribution. Stat Comput 10:339–348

 44. Perrett T, Damen D (2019) DDLSTM: dual-domain LSTM for 
cross-dataset action recognition. In: Proceedings of the IEEE 
Computer Society conference on computer vision and pattern 
recognition, Long Beach, CA

 45. Quattoni A, Wang S, Morency LP, Collins M, Darrell T (2007) 
Hidden conditional random fields. IEEE Trans Pattern Anal 
Mach Intell 29(10):1848–1852

 46. Rabiner L, Juang BH (1993) Fundamentals of speech recogni-
tion. Prentice-Hall, Upper Saddle River

 47. Ramanathan V, Liang P, Fei-Fei L (2013) Video event under-
standing using natural language descriptions. In: Proceedings of 
the IEEE international conference on computer vision, Sydney, 
Australia

 48. Ramanathan V, Yao B, Fei-Fei L (2013) Social role discovery 
in human events. In: Proceedings of the IEEE Computer Society 
conference on computer vision and pattern recognition, Port-
land, OR

 49. Serra-Toro C, Traver VJ, Pla F (2014) Exploring some practi-
cal issues of svm+: is really privileged information that helps? 
Pattern Recognit Lett 42:40–46

 50. Shao J, Kang K, Loy CC, Wang, X (2015) Deeply learned attrib-
utes for crowded scene understanding. In: Proceedings of the 
IEEE Computer Society conference on computer vision and pat-
tern recognition, Boston, MA

 51. Sharmanska V, Quadrianto N, Lampert CH (2013) Learning to 
rank using privileged information. In: Proceedings of the IEEE 
international conference on computer vision, Sydney, Australia

 52. Smailis C, Vrigkas M, Kakadiaris I.A (2019) Recaspia: Recogniz-
ing carrying actions in single images using privileged informa-
tion. In: Proceedings of the 26th IEEE international conference 
on image processing, Taipei, Taiwan, pp 26–30

 53. Smeulders AWM, Chu DM, Cucchiara R, Calderara S, Dehghan 
A, Shah M (2014) Visual tracking: an experimental survey. IEEE 
Trans Pattern Anal Mach Intell 36(7):1–1

 54. Teo CH, Smola AJ, Vishwanathan SVN, Le QV (2007) A scal-
able modular convex solver for regularized risk minimization. In: 
Proceedings of the ACM international conference on knowledge 
discovery and data mining, San Jose, CA

 55. Tran D, Bourdev L, Fergus R, Torresani L, Paluri M (2015) Learn-
ing spatiotemporal features with 3D convolutional networks. In: 
Proceedings of the IEEE international conference on computer 
vision, Santiago, Chile, pp 4489-4497

 56. Tsai YHH, Divvala S, Morency LP, Salakhutdinov R, Farhadi A 
(2019) Video relationship reasoning using gated spatio-temporal 
energy graph. In: Proceedings of the IEEE Computer Society con-
ference on computer vision and pattern recognition, Long Beach, 
CA

 57. Vapnik V, Vashist A (2009) A new learning paradigm: learning 
using privileged information. Neural Netw 22(5–6):544–557

 58. Vrigkas M, Kazakos E, Nikou C, Kakadiaris IA (2017) Inferring 
human activities using robust privileged probabilistic learning. 
In: Proceedings of the IEEE international conference on computer 
vision workshops, Venice, Italy

 59. Vrigkas M, Mastora E, Nikou C, Kakadiaris IA (2018) Robust 
incremental hidden conditional random fields for human action 

recognition. In: Proceedings of the 13th international symposium 
on visual computing, Las Vegas, NV, pp 126–136

 60. Vrigkas M, Nikou C, Kakadiaris IA (2014) Classifying behavioral 
attributes using conditional random fields. In: Proceedings of the 
8th hellenic conference on artificial intelligence, lecture notes in 
computer science, Ioannina, Greece, vol 8445

 61. Vrigkas M, Nikou C, Kakadiaris IA (2015) A review of human 
activity recognition methods. Front Robot Artif Intell 2(28):1–26. 
https ://doi.org/10.3389/frobt .2015.00028 

 62. Vrigkas M, Nikou C, Kakadiaris IA (2016) Active privileged 
learning of human activities from weakly labeled samples. In: 
Proceedings of the 23rd IEEE international conference on image 
processing, Phoenix, AZ

 63. Vrigkas M, Nikou C, Kakadiaris IA (2016) Exploiting privileged 
information for facial expression recognition. In: Proceedings 
of the IEEE international conference on biometrics, Halmstad, 
Sweden

 64. Vrigkas M, Nikou C, Kakadiaris IA (2017) Identifying human 
behaviors using synchronized audio-visual cues. IEEE Trans 
Affect Comput 8(1):54–66

 65. Wang H, Schmid C (2013) Action recognition with improved tra-
jectories. In: Proceedings of the IEEE international conference on 
computer vision, Sydney, Australia

 66. Wang L, Qiao Y, Tang X (2015) Action recognition with trajec-
tory-pooled deep-convolutional descriptors. In: Proceedings of 
the IEEE Computer Society conference on computer vision and 
pattern recognition, Boston, MA

 67. Wang S, He M, Zhu Y, He S, Liu Y, Ji Q (2015) Learning with 
privileged information using Bayesian networks. Front Comput 
Sci 9(2):185–199

 68. Wang Y, Mori G (2011) Hidden part models for human action 
recognition: probabilistic versus max margin. IEEE Trans Pattern 
Anal Mach Intell 33(7):1310–1323

 69. Wang Z, Gao T, Ji Q (2014) Learning with hidden information 
using a max-margin latent variable model. In: Proceedings of 
the international conference on pattern recognition, Stockholm, 
Sweden

 70. Wang Z, Ji Q (2015) Classifier learning with hidden informa-
tion. In: Proceedings of the IEEE Computer Society conference 
on computer vision and pattern recognition, Boston, MA

 71. Yan A, Wang Y, Li Z, Qiao Y (2019) PA3D: pose-action 3D 
machine for video recognition. In: Proceedings of the IEEE Com-
puter Society conference on computer vision and pattern recogni-
tion, Long Beach, CA

 72. Yuan S, Stenger B, Kim TK (2019) 3D hand pose estimation from 
RGB using privileged learning with depth data. In: Proceedings 
of the IEEE/CVF international conference on computer vision 
workshops, Seoul, Korea

 73. Yun K, Honorio J, Chattopadhyay D, Berg TL, Samaras D (2012) 
Two-person interaction detection using body-pose features and 
multiple instance learning. In: Proceedings of the IEEE Computer 
Society conference on computer vision and pattern recognition 
workshops, Rhode Island

 74. Zhu W, Hu J, Sun G, Cao X, Qiao Y (2016) A key volume min-
ing deep framework for action recognition. In: Proceedings of 
the IEEE Computer Society conference on computer vision and 
pattern recognition, Las Vegas, NV

 75. Zhu Y, Long Y, Guan Y, Newsam S, Shao L (2018) Towards 
universal representation for unseen action recognition. In: Pro-
ceedings of the IEEE Computer Society conference on computer 
vision and pattern recognition, Salt Lake City, UT

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.3389/frobt.2015.00028

	Human activity recognition using robust adaptive privileged probabilistic learning
	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 HCRF+ model formulation
	3.2 Maximum likelihood learning
	3.3 Maximum margin learning
	3.4 Estimation of regularization parameters
	3.5 Inference

	4 Experimental results
	4.1 Datasets
	4.2 Implementation details
	4.3 Multimodal feature fusion
	4.4 Comparisons using deep learning features
	4.5 Comparisons using hand-crafted features
	4.6 Ablation studies

	5 Discussion
	5.1 Why is privileged information important?

	6 Conclusion
	Acknowledgements 
	References




