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ABSTRACT
In the ever-evolving world of gaming, controller-based input is quickly becoming obsolete. Various applications, including virtual
reality (VR) and augmented reality (AR) games, have used motion- and gesture-controlled video game consoles. The current state
of the art relies on depth images of the hand that do not utilize color information from the RGB spectrum. In this work, we
focus on the development of an interactive VR game that utilizes hand pose recognition from the RGB domain to increase user
experience, but also simplify the functionality of the game. To address this challenge, a 3D multi-user VR game themed around
a “tennis match” was developed using the Unity engine. We also investigate whether we can estimate the coordinates of colored
objects connected to the hand movement of the players and track human gestures to navigate through the game functions in real
time using an RGB camera. Statistical analysis showed that the user experience increased concerning engagement and satisfaction
using a more natural form of control that allows players to focus on the excitement of the game without worrying about button
presses or joystick movements. Such hand pose recognition systems can be implemented to replace the traditional controller-based
entry systems used today.

1 | Introduction

Human hand gestures have been proven to be an important factor
of human communication, and while hand pose tracking plays a
key function in developing human-machine interfaces for virtual
environments. Using hand gestures as a substitute for physical
switches or remote controls is a typical example [1–3]. More-
over, recent advances in hand gesture recognition in video games
have been a topic of increasing interest and yielded great out-
comes in the gaming industry over the past years [4, 5]. Ges-
ture recognition has been used in a wide variety of applications,
including virtual reality (VR) and augmented reality (AR) games
[6], motion-controlled games [7, 8], and gesture-controlled video
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game consoles [9] to improve user experience and provide per-
sonal engagement so that users may interact with computers,
smartphones, tablets, or head-mounted displays.

Originally, gesture recognition technology in video games pro-
vided only a few limited pre-programmed commands that the
users could perform with their fingers. With the development of
more sophisticated algorithms, it has become possible to provide
users with more accurate recognition of their underlying ges-
tures [10]. In addition, the use of RGB cameras and other track-
ing sensors has enabled video game consoles and computers to
understand players’ hand movements, providing more interactive
gaming experiences [11].
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However, many challenges must be overcome before gesture
recognition can be widely adopted in VR games to replace
physical hand controllers. For example, accurate and real-time
hand localization under uncontrolled environments such as
background noise and lighting, where hands may occupy less
than 10% of the image or be occluded by other objects, or
self-occluded, is still a challenging problem [12]. Moreover,
the lack of a large-scale data generation model that can offer
real-time processing, transferability, standardization, and gen-
eralizability in hand gesture recognition for VR systems, while
several gestural systems have not yet been benchmarked, is
one of the most important challenges to be addressed. To cope
with some of these challenges, we incorporated some VR sim-
ulations where a human character performed gestural move-
ments in a virtual environment with an RGB camera recording
the gestures along with their corresponding annotations. As a
result, a large set of gesture examples was generated and used
to deploy a deep neural network to recognize the underlying
gestures.

As the controller-based input is becoming obsolete due to the
rapid development of real-time hand gesture recognition and
tracking in VR game environments, it becomes evident that this
technology can be seen as a means of controlling gaming experi-
ences. In this work, a multi-user VR game that simulates a tennis
match is developed, where the traditional controller-based entry
systems used today are replaced by a gesture recognition module
that recognizes and tracks the user’s gestural movements using
RGB information only. This work aims to investigate at what
level the gesture mode on the player’s hand movements or object
recognition based on its color feature can be directly used as a
human-machine communication tool between the user and the
VR game to replace the traditional controller-based entry systems
used today. We aspire that through the analysis of the results,
we may be able to understand and determine the factors that
constitute a VR game based on gesture recognition appealing to
players.

The main contributions of this work can be summarized as
follows:

• A hand gesture recognition model is developed that deploys
only RGB information from video streams to determine the
hand joints’ position and estimate the 3D hand keypoints in
real-time.

• An object tracker is also deployed that allows for fast and
accurate hand tracking based on color information.

• A new multi-user VR game that simulates a tennis match is
developed to provide an engaging experience to users. The
user’s gestures during the game correspond to the hitting of
the virtual ball from a racket directly by the physical move-
ments of the player and are mapped to execution commands
in the VR environment.

• A suitable evaluation scheme is adopted that evaluates users’
experience, satisfaction, and usability. Also, the usability test
demonstrates the potential value of substituting the stan-
dard physical VR controllers with an integrated gestural
recognition control system, which may be engaging and
exciting for the users.

The remainder of the paper is organized as follows: In Section 2
a brief review of the related work is presented. In Section 3, the
proposed pipeline, including the gesture recognition approach
from RGB information, is described, and in Section 4, the imple-
mentation details of the VR tennis match game are given. The
results of our work concerning the evaluation of the VR game are
presented and discussed in Section 5. Finally, the paper summa-
rizes the main findings and draws conclusions in Section 6.

2 | Related Work

2.1 | Hand-Gesture Recognition

Hand gesture recognition systems for virtual reality enhance user
interaction by integrating virtual and real-world objects, provid-
ing a more immersive experience compared to traditional devices.
Several systems employ various image processing algorithms for
detection, tracking, and recognition of hand gestures, demon-
strating high user acceptability and applicability in virtual real-
ity games [4, 13]. Moreover, hand gesture recognition in VR
enables users to interact naturally with virtual environments by
interpreting their hand movements and gestures as input com-
mands. Additionally, it facilitates more intuitive communication
and interaction, making the VR experience feel more realistic and
engaging for users [14].

The most common type of gesture recognition used in video
games is known as skeletal tracking [15]. This category of meth-
ods uses RGB cameras and depth sensors to capture a 3D image
of the player’s body and analyzes the images to detect and inter-
pret the corresponding gestures [16]. Thus, gesture recognition
can be used to control a variety of game elements, such as char-
acter movements, object manipulation, and video game menu
navigation. It can also be used to perform special actions, such as
spells in role-playing games. For instance, by moving an object or
performing specific gestures in racing video games, players may
identify with the role of the game character and feel like they are
moving naturally in the racing field. This may cause the game
to be more attractive to the users and also increase the level of
immersion [17].

Recent advances in deep neural networks have enabled comput-
ers to recognize and track hand and finger movements easily,
faster, and with high accuracy [18]. For example, some video
games have implemented gesture recognition algorithms that
allow users to perform natural hand movements in a fully immer-
sive environment as they would in the real world [19]. Wang et al.
[20] utilized a combination of convolutional neural networks
(CNNs) for automatic feature extraction from dual-view RGB
images and LightGBM for ensemble learning to perform regres-
sion on the extracted features. It employs a dataset acquisition
scheme that automatically captures dual-view images and anno-
tates them with corresponding three-axis attitude angle labels
using an IMU sensor. This integrated approach allows effective
mapping from 2D images to 3D hand attitude angles, addressing
challenges such as hand self-occlusion and improving estimation
accuracy.

Chen and Huang [21] employed a gesture recognition method
that utilizes both a CNN-based approach and the WaveXR plugin
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for real-time hand gesture recognition in extended reality envi-
ronments. The CNN-based gesture recognition model outper-
formed the WaveXR plugin, achieving high a F1-score indicat-
ing that the proposed method provides more accurate gesture
recognition compared to the WaveXR plugin’s approach. Isabel
et al. [22] developed a fully immersive virtual reality system
where users can participate in an interactive video game using an
HD-sEMG bracelet showing the potential for reliable hand ges-
ture recognition and control applications in VR.

Several promising tools to promote engagement in VR games
using personalized hand gesture controllers have been proposed
over the last years [23, 24]. For example, [23] proposed a method
that involves developing an immersive VR-based hand reha-
bilitation system that utilizes a personalized gesture-controlled
rhythm game, where users perform specific hand gestures
to match approaching targets synchronized with music. The
authors demonstrated that the proposed VR system successfully
activated brain areas associated with motor planning, multisen-
sory integration, and attention, demonstrating its potential effec-
tiveness for enhancing rehabilitation outcomes in healthy indi-
viduals and stroke survivors. Moreover, hand gestures in VR sys-
tems offer advantages over controllers by reducing fatigue and
increasing efficiency, as demonstrated by [24]. Evaluations sig-
nificantly improved task completion time and user satisfaction,
providing valuable insights for future gesture design and enhanc-
ing VR interaction techniques.

The combination of virtual reality head-mounted displays and
hand gestures used as virtual keyboards is favored for its speed
and intuitiveness. To this end, [25] proposed a method that
involves a gesture-recognition-based virtual keyboard algorithm
designed for head-mounted display devices in augmented and
virtual reality environments. Based on the YOLOv3 framework,
the proposed method achieves 41 frames per second of real-time
processing with high precision. Papadopoulos et al. [26] tried to
address the gap in VR gesture datasets by providing two compre-
hensive datasets. The first dataset refers to controller gestures,
while the second dataset refers to hand gestures. These datasets
were used to train off-the-shelf time series classifiers to analyze
and compare the complexity and performance metrics of hand
gesture recognition versus controller gesture recognition with the
available online datasets.

However, hand gesture recognition in VR is limited by individual
differences in users’ hand characteristics and the complexity of
gesture deformations, such as variations in hand size and move-
ment styles, which can affect the accuracy of recognition systems.
The complexity of gesture movements and the spatiotemporal
changes that occur during interactions can also lead to challenges
in accurately interpreting gestures. Furthermore, real-time pro-
cessing requirements and noise in input data, such as hand jitter-
ing, complicate the recognition process and may reduce overall
recognition performance.

2.2 | Virtual Reality Games

There are many interconnected elements in virtual reality games
that work together to create an overall experience [27, 28]. In
this context, [29] highlights that the high cost of VR equipment

limits its accessibility to a general audience, deterring develop-
ers from integrating VR components into games. Also, existing
game engines often lack support for necessary VR features, mak-
ing it hard to incorporate high-end head-mounted displays and
other VR technologies. This results in a limited audience for VR
systems, posing challenges in creating commercially viable VR
games that can reach a broader market.

In their study, [30] proposed a method that involves an experi-
mental setup where participants are divided into two groups, with
one experiencing a virtual character with full non-verbal cues and
the other with non-verbal cues turned off, to assess the impact on
attention and user experience. The scenario includes a prepara-
tory cinematic phase followed by a verbal presentation from
the virtual character. Eye-tracking measurements can be used
to evaluate shifts in participant focus and engagement through-
out the interaction. Vrigkas and Nikou [31] designed and imple-
mented an interactive VR game that utilizes real-time 3D com-
puter graphics to create an object avoidance scenario, allowing
players to navigate and interact within a dynamically generated
game environment. The game uses mobile devices’ accelerome-
ters and compasses to capture orientation and rotation data in
3D space, facilitating user interaction within the virtual environ-
ment. This allows the device to display a stereoscopic view of the
game, enhancing the immersive experience for players.

A wireless multiplayer interactive VR game transmission frame-
work based on mobile edge computing was proposed by [32]. The
game aims to minimize average inter-player delay by optimiz-
ing mobile edge computing server resource allocation, wireless
bandwidth allocation, and post-processing decision policy, using
an iterative algorithm to solve the non-convex problem under
various constraints. Kanervisto et al. [33] employed a genera-
tive adversarial network (GAN) to create a cheat that mimics
human gameplay behavior, enhancing a player’s performance in
first-person shooters. This approach involves training the GAN
on human gameplay data to produce actions that are indistin-
guishable from those of legitimate players, thereby complicating
detection efforts by anti-cheat systems. However, the rise of such
cheats may lead to ethical discussions within gaming communi-
ties regarding fairness and the overall user experience.

Focused on measuring the user experience in a multi-player VR
environment, [34] performed a user study in which participants
played two VR games, under varying network conditions, includ-
ing different access networks and added latency. The authors
showed that latency in multiplayer VR gaming had varying effects
on user experience depending on the game, with minimal impact
from players’ prior relationships on social interactions. In this
context, [35] performed a content analysis comparing VR-only,
VR-supported, and non-VR titles on the Steam digital store, uti-
lizing both automated data-pulling scripts and trained human
coders to categorize and analyze various attributes of the applica-
tions, including developer categories, user tags, and user ratings.
The results proved that VR-only titles received lower positive
ratings compared to VR-supported and non-VR titles, highlight-
ing discrepancies in classification systems and user perceptions
across different VR experiences.

In recent years, several researchers have studied the effects of VR
on user perception, especially on how users perceive and interact
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with their environment [36–38]. In the context of the effects of
different VR devices on training simulations, [39] focused on
user perception and knowledge gain, through two experiments.
The first experiment with 61 participants examined the impact
of VR displays with varying fields of view on risk detection.
The second experiment with 46 participants assessed how dif-
ferent interaction techniques influenced procedural task learn-
ing, revealing that users’ prior knowledge and gaming expe-
rience significantly affect VR simulations and that cybersick-
ness is often due to unawareness of surroundings. Stuart et al.
[40] proposed a method that utilizes a web application featur-
ing pre-recorded videos of virtual humans that interact with users
via Google DialogFlow, enabling enhanced fidelity in healthcare
training simulations. The results indicated that higher fidelity
rendering styles are preferred for observing subtle visual cues,
while rendering style does not significantly affect interpersonal
communication behaviors.

It is important to note that high computational demands and
latencies in virtual reality game development mean the extent
to which the gameplay will make sense is under threat. In
detail, limitations of the hardware concerning the restricted
field of view, resolution, and tracking precision have a bearing
on user comfort and the degree of immersion achieved. These
limitations bear implications for VR game design and usabil-
ity concerning motion sickness and the requirements for large
physical space.

3 | Materials and Methods

This work consists of three modules. The first one is the detec-
tion of human gestures in real-time to provide the landmarks
of the detected hands and the results of the recognized hand
gestures. The second module corresponds to the real-time hand
pose tracking module from an RGB camera stream. Finally, the
third module is the development of the VR tennis match video
game, where the entire gameplay is controlled by the recognized
hand gestures. It may be considered as a communication chan-
nel between the user’s movements in 3D space and the video
game. Note that the potential for increased realism is one of
the main motivations for replacing traditional hand-held con-
trollers with gestural recognition systems in VR games. This
approach can redefine how we play games, allowing for a more

intuitive and immersive user experience. Hand gestures are a
more natural and intuitive way for users to interact with a virtual
environment and feel like being inside a tennis match, holding
a racket.

3.1 | Gesture Recognition

In the proposed architecture, we leverage the open-source Medi-
aPipe framework [41] to perform accurate hand pose recognition.
More specifically, the proposed framework consists of three ges-
ture recognition steps as follows: (i) a palm detector step that
captures RGB images of the hand and rotates the image within an
oriented bounding box of the hand, (ii) a hand landmark step that
processes the clipped bounding box of the image and returns 3D
hand keypoints, and (iii) a gesture recognition step that classifies
the 3D keypoints of the hand into a discrete set of gestures.

To determine the different hand positions, we compute 21
hand-knuckle joints that correspond to the image coordinates of
the landmarks of the detected hand. Using a 3D joint model, we
estimate the joint positions J = {j𝑖}𝐽𝑖=1 of a hand with J ∈ ℝ3,𝐽 ,
where j𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) and 𝐽 is the total number of joints (i.e., 21
joints).

In Figure 1, we demonstrate our hand pose estimation archi-
tecture. The RGB information of the palm is given as input to
the model, and the VGG-22 network is used to extract a fea-
ture map of the palm. In our method, we deploy in all convolu-
tional layers 3 × 3 kernels with a stride of one and zero-padding
of one and 3 × 3 maxpooling layers. After the last convolutional
and fully-connected layers, the ReLU non-linearities are applied.
Finally, there are two hidden fully-connected layers with 4096
hidden units each that lead to the output layer that consists of
3, 𝐽 output units. To estimate the 3D joints’ position for the out-
put units, a hyperbolic tangent activation function is used.

For the training of the network, we minimized the mean
squared error between the estimated 3D joint positions and
the ground-truth joints of the network. The loss function  is
given by:

 = 1
2J

||ŷ − y||22 = 1
2J

3J∑
𝑖=1

(
ŷ𝑖 − y𝑖

)2 (1)

FIGURE 1 | The proposed architecture of hand pose recognition. RGB images are used as input to predict 21 3D keypoints of the hand.
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FIGURE 2 | The tree-structured hand landmarks with their corresponding indices. Index “0” is the root landmark that represents the hand’s base
point.

where ŷ ∈ ℝ3,𝐽 is the 3J-dimensional vector of outputs computed
from the network with J being the total number of joints, and
y is the ground-truth vector. To enforce kinematic constraints,
we employ the same loss for all joints, since the error for a joint
depends on the error for other joints.

Gesture recognition is performed by determining whether each
finger of the hand is open or closed. The relative positions of the
landmarks to the base point of the palm are depicted as a directed
graph tree structure in Figure 2. We may observe that the coor-
dinates of the points {4, 8, 12, 16, 20} are the coordinates of the
fingertips. The position of the hand with coordinates 0 to 20 is
obtained from 21 keypoints, with one coordinate at each joint, at
the hand landmark.

To estimate each finger’s position, we compare the coordinates on
the y-axis of a fingertip with the coordinates of the middle point of
the same finger. If the coordinate of a fingertip has a value greater
than the coordinate of a middle point, then we set the finger value
to one. This means that the index finger is in the open state; oth-
erwise, the finger is closed. For example, to estimate the position
of the fingers of one hand, we compare the 𝑦̂4 joint with the coor-
dinate of joint 𝑦̂2. If 𝑦̂4 > 𝑦̂2 then the finger is open, else if 𝑦̂4 ≤ 𝑦̂2
then the finger is closed.

To cope with lighting variability, the proposed hand-gesture
recognition model employs adaptive histogram equalization and
brightness normalization. Thus, the contrast of the image is
adjusted based on the pixel’s neighborhood by dividing the input
image into small 9 × 9 regions and then equalizing the histogram
of each region. Moreover, adaptive brightness power-law filter-
ing in the space domain was used to raise the pixel values of the
input image to a power. The power-law transformations have the
following form:

𝑠 = 𝑐 ∗ 𝑟𝛾 (2)

where 𝑟 corresponds to the pixels of the input image, 𝑠 is the fil-
tered image, 𝑐 is a positive constant, and 𝛾 > 0 is a constant that
gives a whole family of curves. For values where 𝛾 < 1, the filter
maps a narrow range of dark input values into a wider range of
output values, while for 𝛾 > 1, the filter reduces the brightness of
the input image.e.

Moreover, the background noise is reduced even in complex or
dynamic backgrounds since the MediaPipe model is a pre-trained
model that provides landmark-based representations of hand ges-
tures rather than relying solely on pixel-level data. This makes

the proposed model more robust to background noise. However,
if the landmarks are inaccurately detected due to occlusions or
overlapping objects, the model may lead to misclassified hand
gestures.

The main goal is to recognize the players’ gestures from the game
interface screen and display a menu of video game functions. The
six gestures that are used in the game are shown in Figure 3.
The six gestures used to control the VR game environment cor-
respond to (a) select single-player domain, (b) pause game, (c)
select multi-player domain, (d) exit game, (e) continue, and (f)
return to the main screen.

From the game interface menu, when all fingers are closed, the
user may choose to play the game with one player. While with
two fingers open, the user may select the multi-user version of the
VR game as illustrated in Figure 4. During gameplay, if only one
finger is open, it indicates that the game can pause for as long as
the user keeps the three fingers to continue the game. Finally, the
user has the option either to exit the game (i.e., four open fingers
should be recognized) or return to the main screen (i.e., five open
fingers should be recognized).

3.2 | Object Tracking

In this section, the approach of real-time hand-pose tracking
through color information is analyzed. The proposed implemen-
tation uses only the RGB color information, where the colors
magenta and green are determined for target tracking from the
continuous video stream. These two colors were selected to match
the colors of the players in the game and the colors of the racket
that the user holds to track his/her movements.

To locate the hand-pose position in the video stream and follow its
movement over time, we deployed the YOLOv8 detector, which is
fast and effective for real-time applications. A challenging aspect
of tracking an object is that it may be occluded by other objects or
its appearance may change when different factors, such as light-
ing, are altered. To address these challenges, we transformed the
RGB video stream to the HSV color model since the latter can
cope with illumination changes. This color model describes the
color in terms of the amount of gray level and its brightness value.
Hue extends from 0 to 179, saturation value extends from 0 to 255,
and luminance value extends from 0 to 255, respectively. The cor-
responding mask is created by defining the range of the desired
color to be detected (i.e., magenta and green).
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FIGURE 3 | Illustration of the six gestures recognized for operating key game functions. (a) Single-player, (b) pause game, (c) multi-player, (d)
continue, (e) exit game, and (f) return to main screen.

Moreover, the YOLO architecture contains 24 convolutional
layers and two fully connected layers. An image is divided into
a grid of a certain size, and then the network computes for each
tile several bounding boxes, assigning to them a confidence score,
which indicates how accurate the detected object was concern-
ing the corresponding bounding box. The confidence score is
given by:

conf = 𝑃 (object|box = 𝑖) ∗ 𝐼𝑜𝑈 truth
pred (3)

where the term 𝐼𝑜𝑈 truth
pred ∈ [0, 1] is called intersection over union,

and it represents the degree of overlap between a predicted frame
and the ground truth in each bounding box.

Finally, each bounding box includes four predictions: The cen-
ter (𝑥, 𝑦), the corresponding width (𝑤), and the height (ℎ) of the
bounding box. An example of the object detection and tracking of
the colored objects with the corresponding bounding boxes using
the YOLOv8 detector is depicted in Figure 5.

4 | VR Game Development

The concept of the VR game is a 3D game on the theme of a
tennis match. The player is set on a tennis court and plays the

game either with the computer as an opponent or with a sec-
ond player by sharing the game display screen. The Unity 3D
cross-platform game engine 2018.4.36f1 was used for the devel-
opment of the VR game along with the C# language. The VR 3D
game is designed to run on desktop devices and head-mounted
displays. Apart from the RGB information, a compass, accelerom-
eter, and gyroscope are also used in the application to perform
passive device tracking.

An example of the user interface of the VR 3D game is depicted
in Figure 6. Area 1 in Figure 6 includes a scene window for view-
ing and editing the scene’s environment. The hierarchy window
(area 2 in Figure 6) is located on the left side of the user inter-
face. In the user interface, the hierarchy window is located on
the left side (area 2 in Figure 6), which contains all game items
in the game scene when it is open. Using the hierarchy win-
dow, we may select an object to edit its properties. All selected
objects are highlighted in orange and can be translated, rotated,
and scaled using the gizmo tool. The asset window (area 3 in
Figure 6) corresponds to Unity’s file manager, which displays
all imported items in the project folder. The folder’s structure
is shown on the left, while its contents are shown on the right.
Finally, the inspector window (area 4 in Figure 6) is used to
edit the properties of the selected game elements, materials, and
models.

6 of 17 Computer Animation and Virtual Worlds, 2025

 1546427x, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cav.70063 by M

ichalis V
rigkas - T

E
I of W

estern M
acedonia (T

E
I K

ozani) , W
iley O

nline L
ibrary on [10/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FIGURE 4 | Instance of the game interface menu showing the basic gestures for the operation of the VR game.

FIGURE 5 | Random instances of real-time object detection and tracking for (a) the magenta and (b) the green object.

Each asset in Unity can be considered as a game object that
includes characters, 3D elements, and lighting properties. A
game object by itself has no functionality, which means that
one must associate several components (e.g., object position
and labels, transformation parameters, colliders, and lighting)
with it. For example, the default label “Player” is useful for
detecting if the player has made contact with the tennis ball,
which is performed using the collider control. Figure 7 illus-
trates an example box collider for a game character of the
VR 3D game.

4.1 | VR Game Characters

When players enter the game’s virtual environment, they are
assigned a 3D character animation as depicted in Figure 8. In the
single-user environment, the main character is the Pink player
who plays against an artificial intelligence (AI) Bot player imple-
mented in the Unity game engine. In the case of a multi-user
domain, the second player is assigned to the Green character.
The pink and green colors were selected to correspond with the
color characteristics of the objects (i.e., rackets) that the players
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FIGURE 6 | User Interface in Unity game engine.

FIGURE 7 | VR game character box collider.

should hold in their hands to track their movements to hit the
ball with them.

Moreover, an articulated mocap humanoid model (Figure 9)
was fit into the 3D character to control the look and feel of
each motion and provide realistic character animation when the
players hit the ball with the racket they are holding in their
hands. Thus, we may record the players’ natural movements
and translate them into animation data for use in the 3D game.

FIGURE 8 | Random instances of the 3D game characters. (a) The
Pink character, (b) the Green character.

Finally, Blender 4.0 was used to link the mocap data with the ani-
mation rig for the skeleton character.

4.2 | Character Controller

A character controller is a game object that controls a first or
third-person character within the Unity game engine. It contains

8 of 17 Computer Animation and Virtual Worlds, 2025

 1546427x, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cav.70063 by M

ichalis V
rigkas - T

E
I of W

estern M
acedonia (T

E
I K

ozani) , W
iley O

nline L
ibrary on [10/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FIGURE 9 | Example of the standard skeleton overlaid on the char-
acter mesh.

all the elements that make up the character of the VR 3D game,
such as performance, collision, and transformation parameters
(i.e., rotation, translation, and scale). Note that the developed ten-
nis VR game is a third-person game, designed to make the users
feel as if they are on the side of the game world, that is, inside a
court.

To move a character in the Unity game engine, the character
must be scripted and react to user input from an input device
(e.g., PC controllers, RGB cameras, or Oculus Quest VR head-
sets). In our case, the input source comes from RGB cameras,
where the objects that the player holds in his hands are recog-
nized and tracked during the gameplay to control the character
movements on the set.

4.3 | VR Game Rules

During the gameplay, we keep track of and display the following
information according to their goal:

• Pink player points: This value corresponds to the points of
the first player in each round of the game.

• Green player points: If a multi-user environment is selected,
this value refers to the points of the second player in each
round of the game.

• Bot player points: This value corresponds to the points of the
Bot player.

• Final score: The total score of the winner is displayed in this
value.

At the start, both players have zero points. To increase the points,
the player must hit the ball within the limits of the opponent’s
area, and the opponent should not repel the ball, or the ball goes
outside the boundaries of the tennis court area. The winner is the

player with the highest score collected in three different sets of
the game. For a player to be declared a winner in each set, he/she
has to achieve 15 points. The degree of difficulty of the game also
increases within the different sets. The player who wins three sets
(i.e., achieves 45 points) is the winner of the game. Some random
examples of the gameplay and the different set wins are displayed
in Figure 10.

To provide a higher-level view of the system, the use-case dia-
gram of the VR game is depicted in Figure 11. At the beginning
of the game, the user has the following three options: (i) start a
single-player game, (ii) start a multi-player game, or (iii) exit the
game. If the user chooses to play the game, then three cases may
occur: (i) play and win the game, (ii) play and lose, or (iii) try the
game from the beginning.

4.4 | Lighting Settings

Lighting plays a crucial role in creating realistic graphics in a
game and has a dramatic effect on its appearance. By placing
appropriate lighting on the scene, we achieve a more realistic
result for the player. Lighting in Unity can be divided into two
categories: (i) real-time lighting and (ii) rendered lighting. Usu-
ally, these techniques are combined to make lighting settings easy
to use. Real-time lighting is mainly used to illuminate moving
objects such as characters or vehicles. However, because real-time
lighting is computed at runtime, it can be very resource-intensive.
This is also why real-time light rays do not produce bouncing
light.

To create more realistic lighting, global illumination is required.
Global illumination is a term used to describe light that reflects
or bounces off other objects. However, using global illumination
may be too slow to perform in real-time. To avoid this obsta-
cle, a burning lightmap method is used. This method computes
global illumination data and stores it in maps called lightmaps.
These computations are done during the gameplay. However, a
disadvantage of this method is that it may only be used for static
objects, since, due to the lightmap, the textures cannot be updated
in real-time. This is why most games use a combination of both
rendered and real-time lighting. Note that before the rendering,
properties such as the number of light bounces computed for the
global illumination and the resolution of the lightmap must be
specified. These settings affect the duration of the rendering.

4.5 | Communication Protocol

Recall that the operation of the interface menu and the move-
ments of the game’s hero are performed exclusively by recog-
nizing and tracking colored objects and the user’s gestures. To
achieve this, we employ the user datagram protocol (UDP) as the
main communication protocol between the received information
from the RGB camera and the Unity platform during gameplay.
UDP was selected because it offers live media streaming services
and is most commonly used in online multiplayer games. This
is because UDP sends the packets without waiting for a confir-
mation before sending the next packet, which means that UDP
communication may lead to much lower bandwidth with no time
delay.
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FIGURE 10 | Random instances of the gameplay and the different set wins. (a) Example of the single-player domain where the Pink player fights
against the Bot. (b) Example of the single-player showing the object tracking window. (c) First game set winner screen, and (d) final score and winner
of the game.

The socket library is used to send the relevant data via UDP to the
following numbered ports:

• Port 5052: The identification data of the magenta color is
sent.

• Port 5053: The identification data of the green color is sent.

• Port 5054: The underlying hand gesture recognition data are
sent.

The gesture recognition module checks if a hand gesture is given
by the user or if a colored object is recognized in the input source.
If any of them is detected, then the data from the output of the
detection algorithm is sent directly via the UDP protocol to the
corresponding Unity objects. The data received by the objects is
finally decoded and displayed in the Unity scene.

5 | Evaluation and Discussion

Next, we evaluate the deep neural network architecture for
the task of hand gesture recognition. For the evaluation, we
employed the same dataset as described by [42]. The dataset con-
tains 2800 sequences of hand skeletons representing 14 classes.
The ground truth contains 22 annotated landmarks; however, for
comparison purposes with prior work [41], we used only a subset

of 21 annotated joint landmarks (i.e., excluding the one that
corresponds to the center of the palm). For training the model,
we used the Euclidean loss that corresponds to the mean squared
error between the ground truth and the predicted landmarks as
described in Equation (1). A batch size of 64 training examples
per iteration was used. The training was realized for 100 epochs
with early stopping, and the Adam optimizer was also used with
a learning step of 5 × 10−3 and was decayed by a factor of 0.1. A
VR simulation was used to test the model. A human character
performed gestures in a virtual environment that were recorded
with an RGB camera and their corresponding annotations.

Table 1 compares the performances of different network archi-
tectures for the hand-gesture recognition task in terms of
F1-score and run-time. The performance of the proposed network
achieved an F1-score of 0.931, which emphasizes the effective-
ness of our VGG-22 and MediaPipe fusion network architecture.
It is also important to note that the recognition is performed in
less than 47 ms, which indicates that the proposed scheme may
be used for real-time applications.

The hand gesture recognition module consists of a combina-
tion of VGG-22 and MediaPipe models. VGG-22 is a deep con-
volutional neural network that is optimized for real-time per-
formance. It is used for feature extraction by removing its fully
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FIGURE 11 | Use-case diagram of the VR game.

TABLE 1 | Evaluation of the hand gesture recognition task.

Model F1-score Time (ms)

MediaPipe [41] 0.915 27
VGG-22 [43] 0.921 43
ResNet-50 [44] 0.914 25
Proposed 0.931 47

connected classification layers and keeping the convolutional lay-
ers to extract deep spatial features from hand images. MediaPipe
provides pre-processed hand landmarks, reducing the computa-
tional time for extensive image processing within the network.
There were no significant performance trade-offs in the combi-
nation of these two models. The entire system was trained using
the Titan X GPU hardware acceleration, and an optimization for
the batch size was also employed to meet real-time constraints.
However, high levels of downsampling and reducing the input
image resolution to lower computational time may affect hand
gesture recognition. For this reason, a fine-tuning approach to
these parameters was conducted to ensure that the model’s accu-
racy remained high without excessive computational overhead.

The corresponding confusion matrices of the hand gesture recog-
nition task are depicted in Figure 12. The proposed methodology,
which comprises the combination of VGG-22 and MediaPipe net-
works, resulted in very small inter- and intra-class classification
errors. As it may be observed, only a few classes are confused
with each other (e.g., the class “Multi-player” vs. the class “Con-
tinue”), while the class “Single-player” was perfectly recognized.
Recall that the class “Multi-player” considers two fingers to be
open, while the class “Continue” considers that three fingers are
open. Since different users may perform the same hand gesture
in a different style, it is apparent that the model may appear
within class or between different classes variations. To mitigate
such ambiguities, a dataset augmentation with multiple users
performing the same hand gesture may be implemented to intro-
duce more variations that may boost the proposed model to learn
finer differences between similar hand gestures. Furthermore,
rotation, scaling, affine transformations, and frame interpolation
are implemented to increase the training data size and improve
classification accuracy.

Also, fine-tuning the fusion approach between VGG-22 and
MediaPipe by giving more weight to key distinguishing
landmarks may help the model focus on the most discriminative
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FIGURE 12 | Hand gesture recognition confusion matrices for the (a) MediaPipe, (b) VGG-22, (c) ResNet-50, and (d) proposed methods.

features. Moreover, incorporating temporal information by using
sequential models such as long short-term memory (LSTMs)
or transformers could provide context and improve hand ges-
ture recognition. However, such models would impose a large
computational burden on the proposed model because modeling
temporal dependencies requires processing one time step at a
time, which can slow down inference, especially in real-time
applications.

To evaluate the VR game and analyze the objectives of the study,
a self-administered questionnaire of Likert scale items was con-
structed. The questionnaire was delivered to 52 users (36 male
and 16 female, as can be seen in Figure 13) who volunteered for
this study, and all of them are actively involved in video game
playing. It is also important to note that, in the current study, four
participants aged between 42 and 55 also played the tennis match
game. However, we excluded these participants because three of
them had trouble completing the VR game, while one was not
willing to answer the questionnaire. We rated each question on a
range of one to five, where one corresponds to strongly disagree
and five stands for strongly agree. Participants were asked to com-
plete an anonymous questionnaire after playing the VR game to
give their thoughts on the experience, satisfaction, and usability.
Additionally, the participants were informed both verbally and in
writing that any anonymous data being collected for this study
would be accessible to only the researchers of this study, and
external access is protected and prohibited.

FIGURE 13 | Gender distribution of the participants.

Figure 14 shows the users’ experience with the VR game. Based
on the results, respondents rated the VR game experience as high
and very high regarding their positive feelings from using the
game and the level of involvement they experienced.

The scores regarding respondents’ satisfaction with the VR game
are depicted in Figure 15. Dimensions such as predictions of
upcoming events and positive feelings regarding the interaction
with the VR environment were measured. The results indicated
that high and very high satisfaction scores were exhibited, with
more than 75% of the respondents raising positive attitudes from
playing the VR game.

Figure 16 represents the users’ scores regarding their interaction
and the quality of being able to control the events in the VR game.

12 of 17 Computer Animation and Virtual Worlds, 2025
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FIGURE 14 | Evaluation of the quality of the users’ experience with the VR game.

FIGURE 15 | Assessing the user satisfaction with the VR game.

Moderate to high scores were achieved, indicating that the object
tracking module provided a good understanding of the VR game
rules and a good interaction with the VR game.

The Pearson correlation coefficient was computed to measure the
users’ satisfaction and usability with the virtual experience of
the game. The results are depicted in Table 2. According to the
results, the experience dimension is significantly and positively
related to the users’ satisfaction (𝑟 = 0.752 and 𝑝 = 5.4 × 10−5).
Similarly, experience with usability (𝑟 = 0.469 and 𝑝 = 0.027) and
experience with immersion (𝑟 = 0.612 and 𝑝 = 0.002) are also
significantly and positively related. Moreover, the satisfaction
dimension is positively related to both usability (𝑟 = 0.495 and
𝑝 = 0.019) and immersion (𝑟 = 0.588 and 𝑝 = 0.006). Neverthe-
less, usability did not influence in a significant way with the
immersion dimension (𝑟 = 0.335 and 𝑝 = 0.128). It may be argued
that the relationship between usability and immersion is affected
greatly by the ability of the users to anticipate the response to their
actions and, at the same time, to search and navigate in the virtual

environment. Therefore, it is important to consider the level of
immersion when designing VR games to actively engage users
and enhance their overall experience.

To bridge the gap between usability and immersion, one should
consider focusing on enhancing intuitive interaction and, at the
same time, increasing user engagement in the VR game. For
example, refining gesture-based controls with more natural and
personalized interactions allows users to tailor controls based on
their comfort level and experience and minimize misclassifica-
tion errors or delays that could break immersion. Moreover, the
proposed VR game incorporates a user tutorial. Also, verbal cues
with expert facilitation were given to the users, which may help
users master the hand-gesture controls more efficiently, leading
to a more fluid and immersive experience.

Furthermore, a between-groups experimental setup was also car-
ried out to facilitate immersive virtual reality and examine the
effects on user experience. We split the participants into two
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FIGURE 16 | Measuring the usability of the VR game.

TABLE 2 | Pearson correlation analysis.

Relationship Pearson’s ra
𝑷

Experience–Satisfaction 0.752 5.4 × 10−5

Experience–Usability 0.469 0.027
Experience–Immersion 0.612 0.002
Satisfaction–Usability 0.495 0.019
Satisfaction–Immersion 0.568 0.006
Usability–Immersion 0.335 0.128

aCorrelation is significant at the 𝑝 < 0.05 level (two-tailed).

groups, with Group A experiencing the VR game with fewer
non-verbal cues and without expert facilitation, and Group B
experiencing all the cues in the highest fidelity. From a total of 52
participants, 26 were divided into Group A, and the rest 26 par-
ticipants were assigned to Group B. Both groups were balanced
in terms of gender and age group. Note that the two groups were
independent, as each player participated in only one group.

In Table 3, the mean values and standard deviation of the ques-
tionnaire items for Group A and Group B are presented. The
results from the questionnaire indicate a significant increase in
the perception of the VR experience (𝑝 = 5.7 × 10−12) and satis-
faction (𝑝 = 0.0031) among participants in Group B as revealed
by a paired t-test with a statistical threshold of 𝑝 < 0.05. However,
the usability questions (Q7–Q9) did not influence in a significant
way (𝑝 = 0.206).

To ensure that the small sample size in Table 3 does not influ-
ence the results and that the observed 𝑝 values reflect genuine
improvements, we calculated Cohen’s d to conduct an effect size
analysis. The Cohen’s d for the perception of the VR experience
is 1.34, which is considered to be a large effect size. However,
for satisfaction and usability, Cohen’s d results are 0.44 and 0.13,
respectively. These findings indicate that for satisfaction, Cohen’s
d is considered to be a medium effect size, while for usability,
Cohen’s d turns out to be a small effect size.

It is important to note that to measure the usability of the VR
game, besides the inquiry method entailing feedback from the
users, we also employed a coaching method [45, 46]. To this end,
a usability test was carried out after a short presentation of the
VR game to the participants. Participants were allowed to ask any
system-related questions to an expert facilitator during the usabil-
ity test. The role of the facilitator was to answer the participants’
questions and to steer the user in the right direction while testing
the VR game. The purpose of this study is to identify the infor-
mation users need to provide better training and documentation
to them. Thus, participant interaction with the interface can be
better understood by analyzing how they use it.

During this test, several concerns arose while using the VR game.
Almost 27% of the participants expressed concerns about mem-
orizing the control gestures for operating key functions of the
game. To cope with this, a clearer set of instructions has been
added to the documentation. We also included the interface of
the VR game, relevant icons showing the basic operational ges-
tures as shown in Figures 4 and 10. Moreover, a text message was
also included on the initial screen explaining to the users how to
start the VR game.

The usability test and the coaching methods showed that the VR
game was exciting and user-friendly. Participants were able to
operate the VR game using the predefined gesture commands.
Also, 64% of the participants indicated that the specific way of
handling the game would be interesting if it were applied to other
devices such as mobile phones or tablets. Furthermore, more
than 70% of the participants reported that they felt freedom of
movement during the VR gameplay. Finally, only six participants
mentioned that they would expect the game VR character to be
able to move forward and back in addition to left-right movement.

Finally, the utilization of the UDP communication protocol for
sending data from the RGB camera to the VR game, in prac-
tice, proved to be sufficient since no significant time delays were
detected nor time lags reported by the users. Thus, the response
of the game VR character to the detectable movements of the
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TABLE 3 | Evaluation of the questionnaire for the two groups of participants.

Group A Group B

No. Questionnaire item Mean SD Mean SD Cohen’s d Interpretation

Q1 How satisfied did you feel with the quality of
the experience?

3.42 0.70 4.85 0.37 2.53 Very large effect

Q2 How involved were you in the virtual
environment experience?

3.23 1.21 4.27 0.83 1.01 Very large effect

Q3 How exciting was the feeling of objects moving
through space?

3.31 1.29 4.38 0.70 1.03 Very large effect

Q4 Were you able to predict what would happen
next as a result of the actions you took?

4.00 0.80 4.31 0.97 0.34 Small effect

Q5 How exciting was the feeling of the hand
gesture interaction with the virtual

environment?

3.69 0.97 4.46 0.86 0.84 Large effect

Q6 How capable of interacting with the hand
gesture controls in the virtual environment did

you feel at the end of the experience?

3.85 1.05 4.04 1.08 0.18 Small effect

Q7 How much were you able to control the events
in the VR game?

3.92 1.06 4.00 0.98 0.08 Very small effect

Q8 How responsive was the environment to
actions you initiated (or performed)?

3.73 1.04 4.31 0.84 0.61 Medium effect

Q9 How natural did your hand pose interactions
with the environment feel?

3.88 1.21 3.65 1.16 0.19 Small effect

colored object was immediate and without delays. Moreover, the
fast recognition of human gestures proved to have a positive
impact on the users, resulting in handling the interface screen
of the VR game efficiently.

5.1 | Limitations

The game was tested on a standard PC monitor. Perhaps the
feel would be more convincing on a larger display screen. Also,
a simple RGB camera was used with promising results, possi-
bly only limiting the distance of the user from the camera. To
cope with this limitation, the application was also tested with a
video camera with greater analysis, and the result was to increase
the player’s freedom of movement. Also, another limitation is
the recognition of user movements only on the 𝑋 and 𝑌 axes.
An additional movement of the character along the 𝑍 axis may
be included in future versions of the VR game to include depth
information.

Moreover, the evaluation of the VR game is limited to a small
cohort of university students of a certain age (18 to 25 years
old) and education level. As a result, the evaluation may be con-
sidered age- and education level-biased; thus, it is necessary to
evaluate the application features on a larger heterogeneous pop-
ulation cohort to obtain more accurate evaluation results. In
this study, addressing the potential bias introduced by exclud-
ing older users or individuals with varying technical expertise
requires a multi-faceted approach [47]. Younger users between
the 18–25 age group may have different cognitive abilities, tech-
nology adoption behaviors, and user preferences compared to

older individuals. The reason for choosing a younger age group is
to test the gesture-controlled tennis match environment between
individuals with active involvement in video game playing. Addi-
tionally, the experience, expertise, and eagerness of this age group
to play video games impose an extra level of difficulty in meeting
their satisfaction requirements for a more natural form of game
control. Thus, the findings are most relevant to young adults
rather than the general population.

6 | Conclusions

In this article, we propose a hand gesture recognition interface
that simplifies and streamlines the process of a multi-user VR
game. Using hand gestures for communication between the user
and the VR game, we explore the possibilities of a fully automated
hand gesture control interface in a collaborative workspace. The
ultimate goal of this work is to provide a more natural form of
control that allows players to focus on the excitement of the tennis
match without worrying about button presses or game controller
movements. The proposed interface was implemented as part of a
virtual reality game engine using RGB sensors, which detect the
hands of the users, recognize the underlying hand pose gesture
in real-time, and track their movements to hit the virtual object.
The system relies on distributed data processing using the UDP
protocol to process data from a single RGB camera.

To localize the landmarks of the hands on the RGB video
stream from which gestures are recognized, a deep convolu-
tional network based on the VGG-22 and MediaPipe networks
was deployed. The position of the landmarks and hand gestures
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are used to control the VR game. The combination of Medi-
aPipe and a VGG-22 network is of great importance in hand pose
estimation, as the proposed scheme may be insufficient for fus-
ing features extracted from both networks and achieved 93.1%
in terms of F1-score on hand pose recognition in real-time. The
response of the virtual game character to the detectable move-
ments of the user was in real-time and without delays. The fast
detection of human gestures had equally positive results in man-
aging the game’s interface screen.

An evaluation study was conducted to measure users’ experience
and satisfaction with the VR game using a 5-point Likert-scale
questionnaire. Also, participants evaluated the features of the VR
application during a usability test. Findings indicated that vir-
tual reality games may yield positive feelings of satisfaction with
the hand gesture control interface. Furthermore, a high degree
of experience for the users was triggered by the VR application.
However, this result depends on camera calibration and poten-
tially the operating conditions posed by the ability of the user to
adapt to a controller-free virtual environment. In this research,
we did not focus on high accuracy, as the developed VR game
represents a means for designing a real-time controller-free vir-
tual environment rather than millimeter accuracy, while provid-
ing an easy-to-use interface for the user. Despite the subjective
nature of the results due to the small cohort used for testing,
the results suggest the potential for gestures to increase VR game
efficiency.

In addition, future research will focus on improving the hand
gesture-based interface using RGB-D sensors, lidar-based sen-
sors, and other types of sensors. A second direction of future
development would be to extend the functionalities of the existing
VR game with more complex gestures or provide full-body action
recognition operations. In addition, augmented reality may be
used to implement the visualization system. Also, in future
research, to address the potential bias introduced by excluding
older users, stratified sampling techniques will be employed to
ensure representation from diverse age groups and varying levels
of technical expertise.
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