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Abstract
Scanning electron microscopy has been a powerful technique to investigate
the structural and chemical properties of multiphase materials on micro and
nanoscale due to its high-resolution capabilities. One of the main outcomes of
the SEM-based analysis is the calculation of the fractions ofmaterial components
constituting the multiphase material by means of the segmentation of their back
scattered electron SEM images. In order to segment multiphase images, Gaus-
sian mixture models (GMMs) are commonly used based on the deconvolution
of the image pixel histogram. Despite its extensive use, the accuracy of GMM
predictions has not been validated yet. In this paper, we proceed to a systematic
study of the evaluation of the accuracy and the limitations of the GMMmethod
when applied to the segmentation of a four-phase material. To this end, first, we
build a modelling framework and propose an index to quantify the accuracy of
GMM predictions for all phases. Then we apply this framework to calculate the
impact of collective parameters of image histogram on the accuracy of GMMpre-
dictions. Finally, some rules of thumb are concluded to guide SEM users about
the suitability of using GMM for the segmentation of their SEM images based
only on the inspection of the image histogram. A suitable histogram for GMM is
a histogramwith number of peaks equal to the number of Gaussian components,
and if that is not the case, kurtosis and skewness should be smaller than 2.35 and
0.1, respectively.

KEYWORDS
accuracy prediction, Gaussian mixture models, scanning electron microscopy, segmentation

1 INTRODUCTION

Material characterisation has provided very important
tools enabling advancements in material science and tech-
nology. The study of micro- and nanostructures and the
plethora of morphologies they may exhibit has led to the
discovery of new composite materials and, at the same
time, allows the precise quality control ofmaterial industry
products.

A large number of composite materials fall into the
category of multiphase materials consisting of more than
one phase. The coexistence of phases in these materials
causes the emergence of new physicochemical properties
which can be exploited in a large variety of applications.
An indicative example of a multiphase crystalline mate-
rial is the ordinary Portland cement (OPC) clinker.1 The
presence and proportion of several crystallographic phases
within the OPC clinker are responsible for the early and
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CHATZIGEORGIOU et al. 59

later hydraulic hardening properties of the cement. This
is also true in most multiphase materials and therefore,
the accurate quantification of phase proportions is of vital
importance to optimise their performance.
A widely used imaging technique in material charac-

terisation is Scanning Electron Microscopy (SEM). SEM is
capable of extractingmultiple information aboutmaterials
such as porosity,2 spatial distribution of crystallographic
phases, and grain size to name just a few. This is achieved
by the utilisation of the multiple detectors of SEM such as
secondary electron, backscattered, or energy dispersive X-
ray spectroscopy detectors. Despite their usefulness, some
of the above techniques are very demanding concerning
sample preparation and measurement time. A fast SEM
technique that is widely used to capture information about
the elemental composition of the sample with a high spa-
tial resolution is backscattered electron imaging (BSE).
The greyscale intensity of BSE images is affected by the
Z-contrast of surface elements and the topography of the
analysed sample.3 The extraction of quantitative results
from the acquired BSE images requires the application of a
supplementary image analysis method in order to separate
segments of the image that are attributed either to different
crystallographic phases (multiphase materials) or to pores
(porous materials). There are numerous segmentation
methods for SEM images proposed in the literature. These
methods may be either supervised4–6 or unsupervised.7,8
Supervised segmentation models are trained in a specific
data set and therefore have limited applicability taking into
account the large spectrum of used acquisition parame-
ters and the differences in the composition of analysed
samples. In addition, supervised segmentation requires
annotated data sets for their training which are not easily
available, and their collection increases theworkload of the
segmentation process. Therefore, unsupervised segmenta-
tionmethodsmay bemore suitable to apply in BSE images.
There are a lot of unsupervised segmentation methods
proposed for image segmentation such as GMM, Otsu
multi-threshold,9 watershed methods,10 etc. GMM is one
of the most widely used segmentation methods which has
also been applied in BSE images.11
In this paper, we consider the application of GMMs only

on greyscale intensities without taking into account any
other spatial image aspects. The main question addressed
here concerns the limitations of the accurate application of
GMM segmentation in SEM images of multiphase materi-
als. To this end, an extensive parameter study is performed
in synthesised SEM images endowed with a developed
neural network trained to accelerate the evaluation pro-
cess. The practical outcome of this study is to propose a
fast and easily implemented method for the prediction of
the GMM accuracy based on the analysis of the real image
histogram alone so that an SEM user could take rational

decisions about the optimum segmentation strategy which
should be applied in SEM image analysis.
The contributions of this paper are the proposal of a new

metric for the accuracy ofGMMdeconvolution, a thorough
study on the effects of different image histogram parame-
ters on GMM accuracy and finally a rule of thumb for the
prediction of GMM accuracy based on histogram shape.
The paper starts with the validation of the basic assump-

tion of GMM, namely the Gaussian character of single-
phase greyscale histograms (Section 2). In the same sec-
tion, a short description of theGMMmethod is given along
with a reference on its limitations. In Section 3, we present
a novel method for the evaluation of GMM segmenta-
tion accuracy while Section 4 describes the algorithms
for the generation of synthesised SEM images and his-
tograms with predetermined phase proportions which will
be used in the validation of GMM. The results of our work
concerning the prediction of the accuracy of GMM-based
segmentation for a large spectrum of involved parame-
ters are presented and discussed in Section 5. The study of
marginal histogram parameters such as skewness and kur-
tosis is the subject of Section 6. The paper summarises the
main findings and draws conclusions in the last Section 7.

2 GMM: ASSUMPTIONS,
LIMITATIONS AND DESCRIPTION

BSE images can be thought of as a set of measurements of
pixel intensities neglecting any spatial information. Under
the assumption that every phase contributes with a Gaus-
sian distribution to the overall greyscale distribution of the
image, GMM may be a useful tool for the accurate decon-
volution of image greyscale distribution. A result of image
histogram deconvolution can be the quantification of the
proportion12 or can be an initialisation tool for a proba-
bilistic segmentation method.13 The basic assumption of
GMM is that the Gaussian distribution describes suffi-
ciently the greyscale intensities of all single-phasematerial
BSE images. To justify this assumption, a typical example
of a histogram of a BSE image of a single-phase material is
shown in Figure 1. In particular, we display the histogram
of the pixel intensities of a BSE image of a SiO2 layer with
a thickness of 2 μm grown on a Si wafer. As usual, before
measurement, the SiO2 layer has been sputtered by gold to
avoid charging. As we can see with the red line in Figure 1,
the experimental histogram is nicely fittedwith a Gaussian
distribution. A similar success of Gaussian fitting has also
been found for histograms of images acquired using other
SEM settings and sample materials.
The only exception that undermines the Gaussian

assumption and therefore the application of GMM comes
from the cases where the histograms lie very close to the
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60 CHATZIGEORGIOU et al.

F IGURE 1 The greyscale histogram of a representative BSE
image depicted a Gold sputtered layer deposited on a layer of SiO2

(2 μm) developed on a silicon wafer (blue dotted line). Also, the
optimum Gaussian fit is shown revealing that greyscale intensities
of BSE images of flat samples are described by Gaussian
distributions.

extremes of pixel intensity range (in the case of an 8 bit
depth image 0 or 255) posed by the limited sensitivity
of BSE detector. In such cases, a large fraction of pixels
possess the extreme intensity values of 0 or 255 causing
an artificial sharp peak in the histogram which cannot
be captured by a Gaussian fitting (see Figure 2A). This
issue imposes the first limitation in the application of
GMM segmentation method since the basic assumption of
single-phase Gaussian distributions is violated.
A second limitation occurs when the distributions of

different phases are strongly overlapped to compose a
unimodal distribution. This happens when the mean dis-
tribution values are close in respect to the variances or
some distribution has much less weight than others and
is totally overlapped within a major one. These limita-
tions have been extensively studied in the literature.14,15,16.
An example of this limitation is schematically shown in
Figure 2B where the GMM method has been applied in
the segmentation of two strongly overlapped distributions
with poor outcomes.
The implementation of the GMM in this work is realised

with the expectation-maximisation (EM) algorithm. His-
tograms are univariate data and hence the brief description
that follows concerns univariate EM-GMM. In general,
GMMs are probabilistic models that assume that every
point of the analysed data set is generated from a set of
weighted Gaussian distributions. Let 𝑋 = {𝑥𝑛}

𝑁
𝑛=1 be the

set of pixel intensities, or in general pixel feature vectors,
corresponding to a single image. Viewing the required

segmentation as a clustering problem on𝑋, we can assume
that the 𝑥𝑛 are independent, identically distributed and
that they are generated by a finite mixture model. This
probability p(𝑥𝑛) is the probability of xn pixel intensity to
appear in the image and it is given by Equation (1) for fixed
parameters of the model:

𝑝 (𝑥𝑛) =

𝐾∑
𝑖=1

𝜋𝑛
𝑖


(
𝑥𝑛|𝜇𝑛

𝑖
, 𝜎𝑛

𝑖

)
, (1)

where 𝜋𝑛
𝑖
are the Gaussian coefficients (or weights) that

represent the probability the 𝑛th pixel to belong to the
𝑖thcluster and satisfy the constraints: 0 ≤ 𝜋𝑛

𝑖
≤ 1, and∑𝐾

𝑖=1
𝜋𝑛
𝑖
= 1. Also, the parameters 𝜇𝑛

𝑖
and 𝜎𝑛

𝑖
represent the

mean value and the variance of the ith Gaussian distribu-
tion , respectively, given by the following formula:


(
𝑥𝑛|𝜇𝑛

𝑖
, 𝜎𝑛

𝑖

)
=

1

𝜎𝑛
𝑖

√
2𝜋

𝑒
−
(𝑥𝑛−𝜇𝑛𝑖 )

2

2𝜎2
𝑖 . (2)

From now on for simplicity, we omit superscript n. Under
the assumption that histogram is a sum of 𝐾 Gaussian dis-
tributions and parameters of all distributions are described
by Θ = {𝜋𝑖, 𝜇𝑖, 𝜎𝑖}

𝐾

𝑖=1, then the probability of any pixel to
take on intensity value 𝑋 can be given by Equation (3):

𝑃 (𝑋 = 𝑥|Θ) = 𝐾∑
𝑗=1

𝜋𝑗
(
𝑋 = 𝑥|𝜇𝑗, 𝜎𝑗) . (3)

The best model of Gaussian distributions that can describe
the analysed data set is given by the model that maximises
the log-likelihood:

max
Θ

log 𝑃 (𝑋|Θ) = max
Θ

𝑁∑
𝑗=1

log
(
𝑃
(
𝑥𝑗|Θ))

= max
𝜋,𝜇,𝜎

𝑁∑
𝑗=1

log

(
𝐾∑
𝑖=1

𝜋𝑖
(
𝑥𝑗|𝜇𝑖, 𝜎𝑖)

)
, (4)

where 𝑁 is the number of pixels.
Consequently, the expectation and the maximisation

steps are optimisation steps in order to find the optimum
model parameters.
According to Xu and Jordan17 in the so-called E-step, a

quantity called responsibility 𝛾 is computed given by the
equation:

𝛾ij =
𝜋𝑖 (xj|𝜇𝑖, 𝜎𝑖)∑𝐾

𝑖=1
𝜋𝑖 (xj|𝜇𝑖, 𝜎𝑖) . (5)
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CHATZIGEORGIOU et al. 61

F IGURE 2 (A) A synthetic BSE image histogram is shown (blue line) composed of two Gaussian distributions (discontinuous lines) and
GMM predicted distributions (dotted lines). (B) The inconsistency of GMM predicted distributions and the real distributions could be caused
by overlapping of distributions (A) or by the loss of normality (B).

In the maximisation step, an update of the Gaussian
mixture parameters occurs:

𝜇new
𝑗

=
1

𝑁𝑘

𝑁∑
𝑖=1

𝛾ij𝑥𝑖, (6)

𝜎new
𝑗

=
1

𝑁𝑘

𝑁∑
𝑖=1

𝛾ij

(
𝑥𝑖 − 𝜇new

𝑗

)2
, (7)

𝜋new
𝑗

=
𝑁𝑗

𝑁
, (8)

where 𝑁𝑗 =
∑𝑁

𝑖=1
𝛾ij.

Since the maximum of log-likelihood is not known, the
algorithm stops when log-likelihood converges when:

|||log 𝑝 (
𝑋|Θ′

)
− log 𝑝 (𝑋|Θ)||| < tol, (9)

where tol is a tolerance parameter of the algorithm.
If Equation (9) is not satisfied, E- and M-steps are
repeated. After convergence of the EM, the data are
assigned to the component with the highest degree
of responsibility based on the maximum value of the
posterior probabilities using the maximum a posteriori
(MAP) principle. It must be mentioned that the initial-
isation of the GMM parameters in this work is realised
with the k-means algorithm.18 The choice of this ini-
tialisation method is realised taking into consideration
that is one of the most widely-used algorithms for this
task.19

3 EVALUATION OF GMMACCURACY

The accuracy of GMM deconvolution can be measured
as the convergence of the predicted distributions with
respect to the initial ones.Measures suchKullbach–Leibler
divergence20 or Mahalanobis distance could be utilised to
this end.21 In this work though requirements such as the
bounded nature of such quantities and fast computation
time lead to the development of a novel index. The pro-
posed index is named distribution similarity index (DS)
and is able to quantify the convergence of two distribu-
tions. This is realised by quantifying the overlapping of the
predicted distribution (PD)with the real one (RD). Inmore
detail, this ratio is calculated as the minimum between
the two ratios of a) the overlapping area divided by the
real distribution and b) the overlapping area divided by the
predicted distribution.

DS

= min

(
overlapping area

predicted distribution area
,

overlapping area
real distribution area

)
.(10)

In the case of a perfect convergence of two distributions
(full similarity), the overlapping area coincides with the
areas of the predicted, and the real distributions and there-
fore DS = 1. Whereas when the convergence deteriorates,
the overlapping of distributions is reduced and DS gets
values lower than 1 (Figure 3A).
We propose to use the minimum of the two ratios of the

overlapping area over the predicted and real distribution
area respectively, in order to avoidmisleading characterisa-
tion of distribution similaritywhen a full overlapping is not

 13652818, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jm

i.13150 by T
E

I of W
estern M

acedonia (T
E

I K
ozani), W

iley O
nline L

ibrary on [09/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



62 CHATZIGEORGIOU et al.

F IGURE 3 (A) Two overlapping Gaussian distributions in which areas are very similar. (B) Two overlapping Gaussian distributions in
which areas differ. In the first case (A) ratios of the overlapping area with respect to the distribution area would be invariant under the choice
of distribution true or predicted. However, in (B) this choice would affect the value of the ratio and hence could be a deceptive measure of
distribution convergence without calculation and the choice of minimum between the two ratios.

accompanied by area similarity too as shown in Figure 3B.
In such cases, the use of a single ratio in the definition ofDS
instead of the minimum could lead to the deceptive value
DS = 1 although the distributions are apparently different.
Hence the use of the minimum ratio (i.e. the denominator
with the maximum area) in Equation (10) is critical to pro-
vide a correct quantification of the similarity of the GMM
predicted distribution with the real one.

4 GENERATION OF SYNTHETIC AND
HYBRID-SYNTHETIC DATA

The evaluation of the accuracy of the GMM-based decon-
volution of amultiphase histogram requires its application
in cases where the parameters of the contributing single-
phase distributions are known before. This knowledge is
hard to be justified in real BSE images and therefore, the
use of synthetic images with predefined single-phase his-
tograms can provide ameans for GMMevaluation. For this
reason, we generate synthetic BSE image histograms by
using generators of random integers normally distributed
provided in the NumPy library.22 These algorithms allow
the independent control of mean value, variance and
the number of integers generated for each single-phase
distribution.
To generate realistic BSE image histograms, we have

performed a thorough investigation of the dependence of
histogram parameters such as mean values and variances
on BSE image acquisition parameters and their correla-
tions. To this end, a silicon wafer sample has been coated
with a 2 μm layer of SiO2 and on top of that, gold lay-
ers of different thicknesses were sputtered to change at

TABLE 1 Gold layer thickness (1st column) and backscattered
coefficient of the corresponding sample (2nd column)

Au (nm) Backscattered coefficient
0 0.098542
5 0.121918
12 0.147930
20 0.176482
25 0.193902

will the mean atomic numbers, in more detail, the thick-
ness of the gold layers are approximately 0, 5, 12, 20 and
25 nm. These stacks can be used to obtain BSE images
with different backscattered coefficients. For the calcula-
tion of backscattered coefficients of measured stacks, the
Monte Carlo simulation method was employed on the
trajectory of electrons using the CASINO software.23 In
Table 1 the calculated backscattered coefficients are shown
with respect to Au layer thickness.
These images were obtained with an FEI Quanta

INSPECT SEM with beam current measured with a Fara-
day cage and kept constant at 2 nA, while beam acceler-
ation voltage was 15 kV. The working distance was set at
10 mm while a defocus of +5 mm was used in order to
exclude topology contrast. The resolution of BSE images
is 4096 × 3535. In Table 2, representative BSE image sta-
tistical moments are presented for indicative contrast and
brightness settings.
First, the Gaussian character of BSE images, except

the oversaturated ones, is evident since the high statisti-
cal moments’ skewness and kurtosis are close to 0 and
3 respectively. A thorough study of image acquisition
conditions, such as contrast, brightness and dwell time,
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CHATZIGEORGIOU et al. 63

TABLE 2 Statistical moments of different thickness layers of gold spattered on a 2 μm of SiO2 on a Si-wafer acquired with 2 different
contrast and brightness settings

Contrast = 55 Contrast = 60
Brightness = 72 Brightness = 65

Gold thickness (nm) 0 5 12 20 25 0 5 12 20 25
Mean 84.43 99.68 118.99 144.63 160.22 20.17 46.62 80.18 124.57 151.42
Variance 2.68 3.23 3.93 4.838 5.41 7.56 9.52 11.60 14.29 15.94
Skewness 0.01 0.01 0.01 0.01 0.01 0.05 0.01 0.01 0.01 0.01
Kurtosis 3.00 3.00 3.00 3.00 3.00 −3.02 3.00 3.00 3.00 3.00

F IGURE 4 (A) Mean greyscale intensity values versus the thickness of gold layer sputtered for contrast value 55. (B) Variance of
greyscale intensity values versus the thickness of gold layer sputtered contrast value 55. (C) Variance vs.Mean intensity values for several gold
layer thicknesses and contrasts 50, 55, 60, 65 and 70. It must be mentioned that in high contrast values the oversaturation of images deters the
valid computation of mean and variance values and hence are not shown in the graph. (D) Slopes of Variances vs.Mean values in logarithmic
scale vs. contrast values.

reveals their correlation to the Gaussian parameters.
Decreasing dwell time is expected to have an impact on the
noise level of the greyscale image, resulting in an increase
in the variance of its intensity distribution. Another antic-
ipated effect is that the increase of contrast also increases
the variance. On the other hand, while an increase of sam-
ple Z effective is expected to result in an increase in the
mean greyscale distribution value (Figure 4A), the vari-
ance is also increased (Figure 4B). In particular, as the gold
overlayer thickness increases corresponding to a higher

Z effective of the sample, an increase in the greyscale
distribution variance is noticed. Such behaviour could be
attributed to the Poisson distribution (shot noise) of the
SEM thermionic electron gun emission. As more elec-
trons are backscattered due to a higher value of sample
Z effective, any variations in the number or the energy of
these electrons are depicted on the number of the detected
electrons. Since the main source of noise in BSE is shot
noise,24 this behaviour is justified. However, shot noise is
not the only source of noise that contribute to the total
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64 CHATZIGEORGIOU et al.

distribution of the depicted greyscale.25 The overall noise
can be calculated with the application of the central limit
theorem, resulting in a Gaussian intensity distribution.
Still, as the above-described Poisson process is the main
noise component, similarities with a Poisson distribution
are observed in the greyscale intensity. More specifically
the variance of the intensity distribution depends linearly
on the distributionmean value, as can be seen inFigure 4C,
while the linear slope is controlled by the experimental
contrast setting (Figure 4D).
Additionally, linear correlation emerges between mean

value and variance in Figure 3C. The slope of variances
and mean values with changing contrast, obey a semi-
logarithmic relation with contrast values of the micro-
scope. Those two correlations were taken into account in
the generation of hybrid synthetic BSE image histograms.

5 RESULTS: PARAMETRIC STUDY

The histogram of the BSE images of a multiphase mate-
rial with 𝑁𝑝 single phases will be determined by 3𝑁𝑝 −

1 parameters given that each phase contributes a Gaus-
sian distribution characterised by three parameters (mean
intensity value, variance and weight) and the sum of
weights should be fixed. In this work, we are limited
to multiphase materials with four phases (𝑁𝑝 = 4) and
therefore the image histograms are determined by 11
parameters. The high dimensionality of the parameter
space challenges the comprehensive sampling of param-
eters and dictates more targeted choices. To this end, we
reduce the impact of four mean distribution values with
the definition of a collective parameter called Rangewhich
defines the intensity difference between the higher and the
lower mean distribution value. The rest mean values of
the other two phases are assumed to be equally distributed
within Range (see Figure 5). In addition, we assume that
all distribution variances are equal and described by the
parameter Var. In real-synthetic images, Var is calculated
utilising the linear relation of mean values and variances
extracted in the BSE measurements mentioned above (see
Table 1). Finally, for theweight parameters of distributions,
we consider two alternatives. (a) First, we set all weights
equal to each other (𝑤𝑖 = 0.25, with 𝑖 = 1, .., 4), and (b) one
of the external weight distributions varies from 0 to 1 while
the other three distributionweights are left unchanged and
determined by the restriction that in every configuration
the sum of all weights should be equal to one. A schematic
representation of the greyscale distributions of four phases
alongwith themeaning of the collective parametersRange,
Variance and Weight used in our analysis is shown in
Figure 5.

F IGURE 5 Schematic representation of the Gaussian
distributions of four phases indicated with different colours. The
meaning of the parameters Range and Variance (Var) are
straightforwardly shown while theWeight of each phase is
quantified by the area under the corresponding Gaussian
distribution. In our analysis, these parameters define sufficiently
the phase Gaussian distributions since we consider equidistant
mean values, identical variances, and weights which are equal for 3
out of 4 distributions

5.1 First case study: equiprobable
distributions

A complete map of the dependence of the DSs of all distri-
butions onRange andVariance for the case of equiprobable
distributions (𝑤𝑖 = 0.25) is shown in the contour graphs
of Figure 6. In all distributions, the map is dominated by
a large area that corresponds to high DS values (larger
than 0.95) shown in yellow colour. In this area, the Range
and Variance parameters define total histograms charac-
terised by the presence of four well-distinguished peaks
(see insets in Figure 6) which can be deconvoluted into
distributions almost identical to the real ones (𝐷𝑆 > 0.95).
This area of GMM success extends in ranges from about 40
to 100 for large variances while it enlarges when Variance
tends to zero. As we are moving towards smaller (<40) or
larger (>100) Ranges, DSs of all distributions get lower val-
ues quantifying the accuracy limits of GMM predictions.
At small Ranges, the degradation of GMM predictions is
due to the strong overlapping of distributions which has
been described as the second limitation of GMM accuracy
in Section 2. Indeed, DS starts to lower at values smaller
than 0.95 when the total histogram becomes unimodal,
and the four peaks are merged into a broad peak of a uni-
modal histogram (see the inset histograms in Figure 6). On
the other side, at large Ranges, the external distributions
touch the extremes of the greyscale spectrum of values
(0 and 255) and their pixels degenerate on these creating
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CHATZIGEORGIOU et al. 65

F IGURE 6 DS versus Range and Variance for all four distributions as calculated for a constant and equal weight of all distributions. (A,
B, C, D) For a better understanding of this figure, a set of histograms are shown along with their positions in the Range and Variance
parametric space.

gradually steep high peaks (first limitation in Section
2). These peaks undermine the Gaussian hypothesis of
distributions and therefore the successful application of
GMM.
Besides the overall similarity of DS maps in all distribu-

tions, one should notice some remarkable differentiations.
Not surprisingly, the GMMpredictions for the external dis-
tributions (1 and 4 in Figure 6) are more vulnerable to the
degradation effects of pixel degeneration at the extreme
values 0 and 255 since these distributions reach first the
extremes of the greyscale spectrum and deviate fromGaus-
sian shape. This difference explains the decrease of DS
at lower Ranges in external distributions as shown in
Figure 6 (cf. Figure 6A,D with Figure 6B,C). Concerning
the small Ranges, again the DSs of the external distribu-
tions 1,4 exhibit different behaviour. Here, they exhibit
strong fluctuations versus both parameters Range and
Variance contrary to the smooth reduction of DS of inter-
nal distributions 2,3. This difference can be attributed to
the fact that GMM starts the deconvolution process with
the fitting of the central distributions to capture the main
peak of the total histogram and then proceeds to the exter-
nal distributions to reproduce themuch weaker tails to the
histogram. Therefore, it is expected that the innate stochas-
ticity of GMM implementation has a stronger impact on
the external distributions with respect to the internal ones.

5.2 Second case study: one distribution
with varying weight

In our second case study, the phase distributions are not
all equiprobable since the weight of one external or inter-
nal distribution can vary from 0 to 0.25 while the other
three distributions have equal probability defined by the
condition that the total sum should be fixed to unity.When
the varying weight distribution is external, a visualisation
of the effects of weight and 𝑅𝑎𝑛𝑔𝑒 for constant variance
Var = 100 is shown in Figure 7.
The results are in similar lines to those of Figure 6.

The stronger deviations of GMM-based predictions from
the true ones are observed at small and high ranges due
to the overlap and degeneration effects explained in the
first case above. Also, the predictions for external distri-
butions are less successful since both deterioration effects
(overlapping and degeneration) have a stronger impact.
The additional effect revealed by the contour graphs of
Figure 7 concerns the distribution with the varied weight
(see Figure 7D). Not surprisingly, it is found that at small
ranges and weights the DS of this distribution gets much
smaller values than the other ones (cf. Figure 7D with
Figure 7A–C) since it is more vulnerable to overlap-
ping effects due to its smaller contribution to the total
histogram.
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66 CHATZIGEORGIOU et al.

F IGURE 7 DS versus the collective parameter Range and the normalisedWeight (wi) of one external distribution (D). The weight of the
latter (D) changes from 0 to 0.25 while w (A, B, C) depends on wi according to w = (1 – wi)/3.

The results of Figures 6 and 7 indicate that the GMM-
based deconvolution of an image histogram does not have
the same accuracy for all distributions. When the distribu-
tion is external or has a smallerweight than the others then
GMM predictions are less accurate and characterised by
more narrow windows of success in the parametric space
of Range, Variance, and weight. To identify which one of
the above-mentioned factors (position or weight) is more
critical in GMM accuracy, we repeated the calculations of
Figure 7 in the case that the distribution with varied and
smaller weights is internal and the results are displayed in
Figure 8. The overall pattern of contour graphs are quite
similar to those shown in Figure 7. However, now themore
vulnerable distribution to the overlapping and degenera-
tion effects is the distribution 3 with the varied and smaller
weight though it is internal. This means that the reduced
weight of a distribution undermines more GMM accuracy
than its external position.

5.3 Third case study: histograms of
real-synthetic BSE images

In hybrid-synthetic BSE histograms, distribution variances
are correlated with distribution mean values. For the third
case study, the equation that connects variance with mean
distribution value emerges from themeasurements shown
in Section 4. In more detail, the contrast setting chosen for
this case is Contrast = 60 where the correlations of mean

values and variance are given by the linear equation:

Var = 0.06312 ×mu + 6.44227, (11)

where 𝑚𝑢 is the mean distribution values. One would
expect that distribution with large mean values is more
susceptible to lower DS values. However, this is not
observed in this case. External distributions are attributed
with lower DS values, indicating the effect of different Z-
contrast has less impact on the GMM predictability than
the relative distribution position (i.e. internal, or exter-
nal). In other respects, the changes of DS with respect to
Range values as presented in Figure 9 exhibit similar over-
all behaviour to the other test cases presented in this work,
where in small Range values overlapping decrease DS val-
ues and increase fluctuations of DSs and in large Range
values saturation diminish DS values.

5.4 Dependence of GMM accuracy on
tolerance values

In the previous calculations and graphs, the implemen-
tation of EM-GMM uses a tolerance 10−5 to compromise
the accuracy of the GMM algorithm and the time the EM
algorithm needs to converge.
One could claim that a lower tolerance in the GMM

algorithm could lead to more accurate histogram decon-
volution and therefore smaller DS values. This claim is
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CHATZIGEORGIOU et al. 67

F IGURE 8 DS versus Range andWeight of one internal distribution (C) varying from 0 to 0.25 (equal to the weight of the other
distributions). Again, the variable w (A, B, D) is extracted from wi according to the equation w = (1 – wi)/3.

F IGURE 9 DS versus Range and Variance for all four
distributions as calculated for constant and equal weights of all
distributions where the Variance of distributions is correlated with
distributionMean values inspired by BSE images.

partially true. As shown in Figure 10, a decrease of toler-
ance from 10−5 to 10−8 leads only to amarginal increase in
the averageDS values at both small and highRangeswhere
the overlapping (unimodality) and degeneration issues
deteriorate GMM predictions respectively. Additionally,
the application of the EM-GMM algorithm with tolerance
equal to 10−8, despite the significant effect on the compu-
tational time required, does not contribute to the reduction
of fluctuations in low Range values. An explanation of
these variations may be again the strong overlapping of
distributions leading to unimodal histograms which GMM
fails to deconvolute with accuracy.

5.5 The role of skewness and kurtosis of
the image histogram

The main question that motivated this work has been to
identify the critical features of the histogram of an SEM
image which can be used to predict the success of the
GMM deconvolution process and therefore the quantifi-
cation of material phase proportions. The results of our
study presented in the previous figures and sub-sections
revealed that this critical feature may be the presence of
peaks or even knees in the total histogram whose num-
ber should be equal to the number of phases comprising
the material under study. When these peaks disappear
because they merge to form a unimodal smooth histogram
due to strong overlapping or they exhibit saturation at
the extreme pixel intensity values (0 or 255) then GMM
predictions deteriorate, and DS gets values less than 0.95.
However, this transition from success to failure is not

abrupt. We can exploit the benefits of the quantification
of GMM accuracy with DS to follow the effects of peak
merging and of the concomitant formation of a unimodal
distribution at small Ranges on the DSs of distributions.
Since the increase of overlapping and the loss of multi-
ple peaks in the distribution is followed by the appearance
of a platykurtic distribution, we try to use the kurtosis
to quantify these changes and calculate its relationship
with the worst minimum DS. Additionally, changes in
distribution weight affect the symmetry of the overall
histogram. To capture such changes in the histogram sym-
metry, the measure of skewness is also used. The result of
this calculation for the first and second case studies are
illustrated in Figure 11A and B, respectively, where Range
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68 CHATZIGEORGIOU et al.

F IGURE 10 DS versus Range for all four phases for EM-GMM implemented with tolerance 10-5 (A) and 10-8 (B) with Variance values
constant and equal to 120.

F IGURE 11 Contour graphs of DS minimum values versus Kurtosis and Skewness of the total image histograms when the weight of the
internal (A) or external (B) distribution changes. Kurtosis decreases in both cases as the Range value increases from 0 to 30, indicating
deviations from the Gaussian shape. The change in skewness comes from the decrease in weight variable in both cases from 1 to 0.1. Variance
is set constant and equal to 240 for all distributions. The red rectangles in both diagrams show the areas where the rule of thumb holds and
GMM can be applied with accuracy. The inset histograms α1, α2 and b1, b2 reveal the importance of rule of thumb since they show examples
of histograms with similar characteristics (unimodal in α1, α2 or bimodal in b1, b2) but with values of kurtosis (α1, α2) or skewness (b1, b2)
lying inside (α1, α2) and outside (α2, b1) the red area of rule of thumb dictating the accuracy of GMM results.

values vary from 0 to 30 for fixed Variance equal to 240 and
Weight changes from 0 to 0.25 for fixed Range. The effect
of parameters on DSs have been shown in Figures 6 and 7.
In both cases, one can notice a threshold of Kurtosis equal
to 2.35 and skewness 0.1 can safely separate the histograms
with minimum DSs larger than 0.9 (considered as GMM
accurate) from images with histograms that are not able to
be segmented accurately with GMMmethod:

skewness < 0.1 and kurtosis < 2.35

One could use this condition as a rule of thumb to predict
if an image-histogram, with characteristics close to the test

cases presented in this work, can be accurately segmented
with GMM.
In Figure 11, the inset histograms α1, α2 and b1, b2 show

an example of using this rule of thumb. In Figure 11A, both
histograms α1, α2 have a unimodal shape however kurtosis
of α1 is smaller than α2 and therefore it belongs to the area
(shown with the red rectangle) where the rule of thumb
holds and GMM can be used safely. A similar behaviour
is shown in histograms b1 and b2 (see Figure 11B) which
exhibit multimodal shape but the number of peaks do not
comply with the number of distributions in the histogram.
In this case, the skewness threshold of the rule of thumb is
able to predict the accuracy of GMM algorithm.
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CHATZIGEORGIOU et al. 69

6 CONCLUSIONS

GMM is a versatile tool for data clustering, with appli-
cations found in image analysis and in segmentation
processes. One of the goals of the GMM segmentation
process applied in scanning electronmicroscopy is the sep-
aration of different phases (with differences z-effective)
in a multiphase material. In this work, GMM algorithms
are implemented for the segmentation of BSE images of
multiphase materials. In more detail, factors that reduce
the accuracy of the GMM segmentation ability are stud-
ied and specified. To this end, a new metric for GMM
accuracy is introduced that is called distribution similarity
index (DS). In addition, an experimental aware framework
for the generation of synthetic BSE image histograms is
established.
The parametric space, however, is infinite and hence

a compromise on the number of parameters has been
made. The subspace studied in this work can be described
with three parameters: Range, Variance andWeight, while
the number of distributions is kept constant and equal to
4. The parameter Range is the interval that is separated
equidistantly to set mean distribution values. Variance is
defined as the variance set equal to all distributions or
defined through a linear relation that emerged from exper-
imental data. Finally, the total number of pixels is kept
equal in all cases; however, the proportion of all distribu-
tions is not equal. The proportion of one distribution (𝑤𝑖)
varies from0 to 0.25while other distributions share equally
the rest of 1−𝑤𝑖

3
fraction of total pixels.

It is shown that one of the major causes of reduction
in the GMM accuracy is the overlapping of distributions,
where highly overlapped distributions are not able to be
deconvoluted correctly with the GMMmodel. In addition,
another reason that GMM fails to deconvolute BSE-image
histograms is saturation, where a number of pixels agglom-
erate at the largest or smallest value of greyscale intensities,
changing the Gaussian shape of distributions. Finally, we
address the question of the inverse problem of how we
can relate the overall histogram shape to GMM accuracy.
The outcome of this study indicates that GMM is an accu-
rate method when histograms exhibit a multimodal shape,
with the number of peaks equal to the number of phases in
our material. In the marginal cases where the histogram
has a unimodal shape or less peaks than the number of
phases, it has been found that GMM results can be suf-
ficiently accurate if histogram skewness is lower than 0.1
and at the same time kurtosis is smaller than 2.35. This
rule of thumb has been tested in histograms similar to the
cases studied in this work and complements the main cri-
terion of the number of peaks when we have marginal
deviations from it. The study of GMM accuracy in a larger

parametric space besides the cases of this work is left as
future work. Additionally, a more precise prediction of
GMM accuracy based on the total image histogram shape
alone could be achieved with neural network approaches
trained with modelling data similar to those used in this
work. A first attempt towards this direction has been pre-
sented in Chatzigeorgiou et al. while a more thorough and
in-depth analysis is left as future work.
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