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Abstract

Most of the facial expression recognition methods con-
sider that both training and testing data are equally dis-
tributed. As facial image sequences may contain informa-
tion for heterogeneous sources, facial data may be asym-
metrically distributed between training and testing, as it
may be difficult to maintain the same quality and quantity of
information. In this work, we present a novel classification
method based on the learning using privileged information
(LUPI) paradigm to address the problem of facial expres-
sion recognition. We introduce a probabilistic classifica-
tion approach based on conditional random fields (CRFs)
to indirectly propagate knowledge from privileged to regu-
lar feature space. Each feature space owns specific param-
eter settings, which are combined together through a Gaus-
sian prior, to train the proposed t-CRF+ model and allow
the different tasks to share parameters and improve clas-
sification performance. The proposed method is validated
on two challenging and publicly available benchmarks on
facial expression recognition and improved the state-of-the-
art methods in the LUPI framework.

1. Introduction

Facial expression recognition has recently attracted
much attention due to its applicability in several fields of
biometrics, computer vision, and machine learning [30, 34].
Its applications may vary from video surveillance, driver
and/or patient monitoring to human-machine interactions.
Many facial expression recognition systems provide infor-
mation about the personality and psychological state of a
person. In real world, humans express their emotions as a
combination of verbal and non-verbal multimodal cues such
as gestures, facial expressions and auditory cues. Combin-
ing different modalities poses a great challenge on recog-
nizing facial expressions [26, 27].

The multimodal nature of the problem requires the de-
velopment of new learning techniques. Several approaches

such as multi-task learning [19] and domain adaptation [10]
have been proposed for dealing with multimodal problems.
These approaches assume that the classifier is trained and
tested on similar sets of data. However, exploiting the same
type of information during training and testing may not al-
ways be possible due to data acquisition constraints. To this
end, learning using privileged information (LUPI) [28] has
been explored to cope with the inhomogeneity in training
and testing information. The idea of privileged information
is that one may have access to additional information about
the training samples, which is not available during testing.

The LUPI framework emulates the human’s perception
of learning as it resembles the way that an educator teaches
his/her students by providing additional knowledge, com-
ments, explanations, or rewards in class, while the students
latter are forced to solve problems without having access to
this additional knowledge. In this context, the LUPI frame-
work has also been used in several machine learning appli-
cations such as boosting [3], clustering [8], facial expres-
sion recognition [31] and textual description [25].

Learning using privileged information is a challenging
task, since privileged information is only available during
training and thus, an effective way of combining regular
and privileged data is mandatory for recognizing the ac-
tual class label. In this context, the privileged information
should be efficiently embedded into the classifier and esti-
mate the model parameters. However, defining which infor-
mation may be considered as privileged and which as regu-
lar is not an easy task as the problem is not straightforward
[24], while the lack of informative data or the presence of
misleading information may influence the performance of
the model by introducing bias. There are several types of
information that may be used as privileged. For example, in
emotion recognition audio features may constitute a reason-
able factor for understanding emotional states. Also, binary
attributes such as facial action units may be used as auxil-
iary information for recognizing facial expressions.

In this work, we address these limitations by introducing
a novel probabilistic model, which incorporates the LUPI
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Figure 1. An overview of the proposed framework.

paradigm into a unified framework for recognizing facial
expressions and affective states of a person. We propose an
efficient method to indirectly transfer the knowledge from
privileged to the original feature space using conditional
random fields (CRFs) [13], called transfer-CRF+ (t-CRF+).
Specifically, the privileged information is provided as addi-
tional input to our model through a two step classification
process. We first train a standard CRF model on the privi-
leged data and encode the ability of privileged information
to distinguish between different class labels into the model
weights. The learned privileged weights are then used to pe-
nalize the training process on the original feature space by
learning the conditional probability distribution between the
class labels and original observations. The penalty term en-
courages the model to assign larger weights to samples that
have a good evidence to distinguish between classes both in
privileged and original feature space and smaller weights to
the contrary. In other words, the proposed model is able to
enhance the classification accuracy by learning a better es-
timate of model parameters in the original feature space by
transferring the knowledge from the privileged data. Figure
1 illustrates an overview of the proposed methodology.

The main contributions of our work can be summarized
in the following points: (i) a new probabilistic classification
scheme based on CRFs is proposed to improve the recog-
nition of facial expressions and affective states of a person
by gaining additional knowledge about the training data us-
ing privileged information; (ii) information transferring is
used to keep only the relevant information between privi-
leged and original feature space. Note that the proposed
method is general and is not limited to the use of any spe-
cific form of privileged information, but rather it is general
for any form of additional data.

The remainder of the paper is organized as follows: in
Section 2, a review of the related work is presented. Section
3 presents the proposed t-CRF+ approach. In Section 4,
experimental results are reported. Finally, conclusions are
drawn in Section 5.

2. Related Work

Facial expression recognition methods may be divided
into two broad categories, namely: frame-based and

sequence-based methods [34]. Rather than recognizing
static facial expressions, video-based methods are more nat-
ural related to human perception of understanding as facial
events dynamically evolve over time. Thus, subtle facial ex-
pressions such as sadness or anger, that may efficiently be
recognized from video sequences, may not be identifiable
in static frames [1]. Another difference is that sequence-
based approaches usually have smaller training and testing
sets than frame-based methods.

In this context, Walecki et al. [29] proposed a variation
of hidden conditional random fields (HCRF) [21] to model
hidden dynamics of sequential facial expressions and auto-
matically select the optimal model that can better discrimi-
nate between different facial expressions. The work of Da-
pogny et al. [6] was focused on bridging the gap between
sequential and static classification of facial expressions by
combining transition classifiers from both geometric and
appearance features and fusing static and dynamic informa-
tion from different time intervals. Lorincz et al. [14] used
dynamic programming kernels with facial feature points for
emotional expression recognition. All these methods as-
sume pre-segmented facial expression sequences. As an al-
ternative, Wu et al. [32] combined multiple instance learn-
ing and hidden Markov models (HMMs) to identify facial
emotions from multiple peaks of expression.

Much research has also been focused in combining
appearance features and the facial action coding system
(FACS) [15, 20, 26]. Song et al. [26] studied the problem of
facial expression recognition in partially labeled data under
the terms of sparsity and compressed sensing. However,
manually annotating facial expressions with facial action
units (AU) is very time consuming due to the large amount
of data. To this end, Girard et al. [9] varied the number
of training data in facial expression recognition systems to
estimate the optimal amount of input data required to auto-
matically detect AUs and improve classification accuracy.

Multi-modal approaches based not only on facial but also
on audio features have recently gained much popularity for
recognizing affective facial states of a person [5, 23]. Usu-
ally, facial expressions are accompanied with vocal expres-
sions that enhance the feeling of a person about the cor-
responding situation such as pain or surprise. Relying on
that fact, Meng and Bianchi-Berthouze [17] proposed a hy-
brid method based on HMMs to classify audio/visual af-
fective expressions through a multistage classification ap-
proach. Ramirez er al. [22] proposed a modification of
HCREFs, called latent-dynamic conditional random fields
(LDCRFs) to model the interaction between different high-
level modalities (audio and video) using late fusion to clas-
sify facial expressions on affect. Although their method per-
forms well, the lack of an intrinsic audio-visual relationship
estimation limits the recognition problem. Song et al. [27]
exploited the sparsity of temporal motion patterns to iden-



tify audio/visual facial emotions through sparse codebook
learning.

The LUPI paradigm was first introduced by Vapnik and
Vashist [28] as a new classification setting to model a real
world learning process (i.e., teacher-student learning rela-
tionship) in a max-margin framework, called SVM+. How-
ever, SVM+ is computationally more expensive than stan-
dard SVM since it requires a contemporary estimation of
the loss function for original and privileged space. Wang
and Ji [31] exploited privileged information to recognize fa-
cial expressions by proposing two different loss functions,
which can be adapted to any classifier. The first model en-
coded privileged information as an additional feature during
training, while the second approach considered that privi-
leged information can be represented as secondary labels.
Serra-Toro et al. [24] proved that successfully selecting in-
formation that can be treated as privileged is not a straight-
forward problem. The choice of different types of privi-
leged information in the context of an object classification
task implemented in a max-margin scheme was also dis-
cussed by Sharmanska et al. [25]. Both original and priv-
ileged features were considered of equivalent difficulty for
recognizing the true class. Finally, Yang and Patras [33]
trained conditional random regression forests for detecting
facial features, where the privileged information was used
for choosing proper split functions at some randomly se-
lected internal node.

3. Leaning with privileged information

We consider a labeled dataset with N training examples,
which consists of triplets D = {(x;,x}, )}, where
x; € RMx is a training observation from the feature space
X and y; corresponds to a class label defined in a finite label
set ). In the context of learning using a privileged infor-
mation paradigm, additional information about the obser-
vations x; is encoded in a feature vector x; € R™x" in the
privileged space X*. Such privileged information is pro-
vided only at the training step and it is not available during
testing, while no further assumption about the form of the
privileged data is made.

In particular, x; does not necessarily share the same
characteristics with the original data, but is rather computed
as a very different kind of information, which may contain
verbal and/or non-verbal multimodal cues such as (i) visual
features, (ii) attributes, (iii) textual descriptions of the ob-
servations, (iv) image/video tags, and (vi) audio cues. The
goal of LUPI is to use the privileged information x; as a
medium to construct a superior classifier for solving practi-
cal problems than one would learn without it.

3.1. t-CRF+ model formulation

Our method uses CRFs, which are defined by a chained
structured undirected graph G = (V, £) (see Fig. 2), as the

Figure 2. Graphical representation of the chain structure CRF
model. The grey nodes are the observed features (z;) and the white
nodes are unknown labels (y;), respectively.

probabilistic framework for modeling the facial expressions
of a subject in a single image or video. During training,
a classifier and the mapping from observations to the label
set for the different configurations are learned. In testing,
a probe sequence is classified into its respective state using
belief propagation (BP) [12].

The CRF model is a member of the exponential family
and the probability of the class label given an observation
sequence is given by:

—Aw)) (1)

where w = [0, w] is a vector of model parameters. We as-
sume that our model follows the first-order Markov chain
structure (i.e., the current state affects the next state). Fi-
nally, F(y|x;w) is a function of sufficient statistics and
A(w) is the log-partition function ensuring normalization:

=log Z exp (E

Different sufficient statistics F(y|x,x*; w) in (1) define
different distributions. In the general case, sufficient statis-
tics consist of indicator functions for each possible config-
uration of unary and pairwise terms:
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where the parameters 6 and w are the unary and the pairwise
weights, respectively, that need to be learned.
The unary potential is expressed by:

B WL

j a€y

(I)(ijxjv j _axj7 (4)

and it can be seen as an observation feature function, which
models the relationship between the label y; and the obser-
vations x;, where 1(-) is the indicator function, which is
equal to 1, if its argument is true and O otherwise.

The pairwise potential is a transition function and repre-
sents the association between a pair of connected labels y;
and yy. It is expressed by:
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Index ¢ corresponds to the number of the pairwise poten-
tials.Note that the CRF model keeps a transition matrix for
each label.

3.2. Parameter learning and inference

In the classical CRF model, the optimal parameters are
estimated during training by maximizing the following loss
function:

[wl”

N
L(w) =) _logp(yilxiiw) = 5. (6)
i=1

The first term is the log-likelihood of the posterior prob-
ability p(y|x; w) and quantifies how well the distribution in
Eq. (1) defined by the parameter vector w matches the la-
bels y. The second term is a Gaussian prior with variance
o? and works as a regularizer.

Our work is based on the intuition that privileged infor-
mation is more informative than the ordinary information
and thus, learning on privileged data may improve the clas-
sification. The proposed t-CRF+ model relies on the idea
that instead of jointly learning the ordinary and privileged
information, we first train an ordinary CRF on the privi-
leged feature space X'*, and then we exploit the obtained
knowledge to improve the performance on the target fea-
ture space X, for which training data are always available
during training and testing.

To achieve the knowledge transfer, we penalize the loss
function of the standard CRF model with an additional term
that corresponds to a Gaussian prior with zero mean and
variance og. Thus, the loss function in Eq. (6) is modified
to encode the knowledge transfer from privileged to original
feature space:
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where w, and w, are the model parameters when training
in the original and the privileged feature space, respectively.
In Eq. (7), the parameters wq, and wy, should be of equal
length and this is achieved using canonical correlation anal-
ysis (CCA) [11] as a preprocessing step. The parameters
af, and o2 are tuning parameters that control the degree of
influence of the privileged and the original information, re-
spectively.

Figure 3 illustrates the graphical representation of the
proposed t-CRF+ model. The t-CRF+ model is parame-
terized by two hyper-parameters w, and w,. In this case,
the privileged information is indirectly transferred for learn-
ing the baseline CRF model through the learned prediction
function for each training instance in the privileged space.
The privileged parameters wy, are used in the original con-
ditional log-likelihood function to influence the values of
the parameters in the original feature space.

Algorithm 1 Transferring knowledge from X* to X" using
t-CRF+

Input: Original data X, privileged data X'*, class labels ).
Output: Predicted labels.

1: Perform canonical correlation to make the dimensions
of X and X* equal.

2: Train a standard CRF on the privileged data (x*,y) us-
ing Eq. (6) and estimate models’ parameters wp,.

3: Train a CRF on the original feature space (x,y) using
Eq. (7) to transfer the knowledge from the privileged to
the original feature space.

4: Obtain final labels using Eq. (8).

The degree of influence the privileged information may
have upon the original information depends on the degree
of evidence for each privileged weight. The smallest the
values of the privileged weights wy, are, the smallest the in-
fluence of privilege data also is. The opposite occurs when
samples with larger privileged weights w, may contribute
more heavily through the Gaussian prior in Eq. (7) and thus,
the privileged knowledge may have greater effect on the fi-
nally parameter learning. This process can be viewed as
selection process, where the most informative data in the
privileged space contribute to the classification of the true
label.

In our implementation, the loss function in Eq. (7) is
optimized using a gradient-descent optimization method.
More specifically, we used the limited-memory BFGS
(LBFGS) method [18] to minimize the negative log-
likelihood of the data.

Having computed the optimal parameters w* in the
training step, our goal is to estimate the optimal label con-
figuration over the testing input, where the optimality is ex-
pressed in terms of a cost function. To this end, we maxi-
mize the posterior probability:

y = arg max p(y|x; w) . (8)
yey
The marginal probability is obtained by applying the BP
algorithm [2] using the graphical model as depicted in Fig.
2. The main steps of the proposed t-CRF+ classification
model are summarized in Algorithm 1.

4. Experimental results

To show the ability of the proposed t-CRF+ method
to generalize, we compared it with several state-of-the-
art methods for two different computer vision applications,
namely emotional facial recognition, and facial expression
recognition, with different type of privileged information
for each problem. For the first problem, we used the AVEC
2011 dataset [23] and for the second we used the extended
Cohn-Kanade (CK+) dataset [15].



Figure 3. Proposed t-CRF+ model. First, a standard chain structure CRF model is trained on the privileged feature space (X™*) with
parameters wp. Then, the privileged knowledge is transferred to the original feature space (X). The square nodes correspond to the unary
and pairwise potentials, which are conditioned on their hyper-parameters wy, and wo, respectively.

4.1. Datasets

AVEC 2011 audio/visual challenge dataset [23]: This
dataset consists of 95 sequences of upper body video seg-
ments at resolution of 780 x 580 at 49.979 fps while the
audio was recorded at 48 kHz, and is part of the SEMAINE
corpus [16]. The AVEC 2011 dataset consists of 31 videos
for training, 32 videos for validation, and 32 videos for
testing, annotated with four affective labels such as activa-
tion, expectation, power, and valence. As original features,
we used the pre-computed video features provided by the
dataset, and the privileged information was selected to be
the provided audio features, which were obtained from var-
ious low-level descriptors. Due to the large amount of data
and relatively high feature dimensionality for this dataset,
we followed the same strategy as proposed by Schuller et
al. [23] for sub-sampling the data and reducing the feature
dimension.

Cohn-Kanade (CK+) dataset [15]: This dataset de-
scribes facial expressions such as anger, disgust, fear, hap-
piness, sadness, surprise, and contempt. All facial ex-
pressions are expressed by the facial action coding system
(FACS) [7], which describes all possible facial expressions
as a combination of action units (AU), extracted from each
participant, to identify their emotional state. It consists of
593 video sequences of 123 subjects captured from the neu-
tral face to the peak expression. Since FACS are coded only
at the peak frame, we only considered the peak frame in
our experiments. For this dataset, the original features were
selected to be the 68 tracked facial landmarks obtained by
active appearance models [4] and the privileged information
was selected to be the 17 annotated action units, all provided
by the database creators.

4.2. Baseline approaches

We compared the proposed method with several base-
line methods that may or may not use privileged informa-
tion. First, we used SVM+ [28], which consists of opti-
mizing the hyperplane parameters such that it can minimize
the probability of incorrect classifications and increase the

convergence rate. The second baseline is the rank transfer
SVM+ (1t-SVM+) [25], which exploits a max-margin tech-
nique to transfer knowledge from the privileged to the orig-
inal feature space. Finally we compared with the method of
Wang and Ji [31], which exploits a loss inequality regular-
ization (LIR) to address the sensitiveness of the loss func-
tion against the inequality constraints.

We also compared the proposed t-CRF+ method with or-
dinary SVM and CRE, as if they could access both the orig-
inal and the privileged information at test time. This means
that we do not differentiate between regular and privileged
information, but use both forms of information as regular
to infer the underlying class label instead. In this case, we
considered early fusion to combine features from different
modalities. Furthermore, to complete the study, we also
trained an CRF model that uses only the regular and only
the privileged information for training and testing.

4.3. Model selection

The Lo regularization scale terms o, and o, were set
to 10%, with k € {3, ...,3}. The optimal parameters for
all baseline methods were selected using cross validation,
and the best parameters or parameter sets were used to re-
train the model. Finally, our model in Eq. (7) was trained
with a maximum of 400 iterations for the termination of the
LBFGS minimization method.

The evaluation of our method was performed using
leave-one-subject-out cross validation to split the datasets
into training and test sets, according to the documentation
described in each dataset, and we report the average re-
sults over all the examined configurations. For the SVM-
based methods we consider a one-versus-all decomposition
of multi-class classification scheme and average the results
for every possible configuration.

4.4. Results and discussion

In the first set of experiments, we assessed the impact of
privileged information to recognize affective states of emo-
tional audio and video dyadic interactions between human
participants using the AVEC 2011 dataset [23], and we also



Dataset Regular Privileged  Accuracy (%) AUC (%)
visual X 60.5 85.7
audio X 59.6 83.1

AVEC 2011 [23] visual+audio X 60.7 70.6
visual audio 70.7 91.2
facial Ind X 85.4 91.9
AU X 85.1 92.5

CK+[15] facial Ind + AU X 85.9 93.4
facial Ind AU 93.6 99.3

Table 1. Comparison of feature combinations for classifying fa-
cial expressions and affective states on AVEC 2011 [23], and CK+
[15] datasets. The crossmark indicates the absence of privileged
information during training.

trained the proposed model to the CK+ dataset [15] for rec-
ognizing facial expressions. For the evaluation of the pro-
posed method we used the classification accuracies and the
area under the ROC curve (AUC), which compares the true
positive against the false positive rate. The benefit of using
robust privileged information along with conventional data
instead of using each modality separately or both modali-
ties as regular information is shown Table 1. For the clas-
sification, we used a standard CRF model and compared it
with the proposed t-CRF+ method. We may observe that
for both datasets, if only privileged information is used as
regular features for classification both the classification ac-
curacy and the AUC are lower than when using only the reg-
ular information for the classification task. However, these
results are relatively similar to each other, which leads to
the conclusion that finding proper privileged information is
not always a straightforward procedure. Moreover, the pro-
posed classification scheme performs better than all other
approaches. These results demonstrate that the t-CRF+
model can successfully exploit the privileged information
to improve the recognition accuracy.

In the second set of experiments, the proposed approach
was compared with several state-of-the-art methods, that
may or may not use privileged information for both datasets.
The results are presented in Table 2. The results indi-
cate that our approach improved the classification accu-
racy and the AUC. On AVEC 2011, we significantly man-
aged to increase the classification accuracy by approxi-
mately 10% and the AUC by 20% with respect to CRF and
SVM, which do not employ privileged information, as our
approach achieves very high recognition accuracy for this
dataset (70.7%). The improvement of our method compared
to the methods that also employ privileged information is
high. Furthermore, our method outperforms by approxi-
mately 7% in recognition accuracy and by 5% in AU the
rt-SVM+, which also employs transferring of privileged in-
formation. Accordingly, for the CK+ dataset, the improve-
ment against the state-of-the-art methods is also high and
almost 8% higher accuracy with respect to the achieved by
rt-SVM+ and 6% higher when compared to SVM+ and LIR

AVEC 2011 CK+
Accuracy AUC Accuracy AUC

Methods without privileged information

Method

SVM [2] 57.3+0.1 73.7+£0.3 84.8+0.1 87.3+0.1
CRF [13] 60.7+0.8 70.6+04 859+06 93.4+0.1
Methods with privileged information

rt-SVM+[25] 63.6+0.1 86.3+0.1 857+0.1 88.44+0.2
SVM+ [28] 59.6+0.1 65.7+£0.1 87.7+£0.1 85.6+0.1
LIR [31] 493+0.1 672+£02 87.3+£0.8 85.5+0.1
t-CRF+ 70.7+0.3 929+0.1 93.6+0.7 99.3+0.0

Table 2. Comparison of the classification accuracies and the area
under the ROC curve (%) for the AVEC 2011 [23] and the CK+
[15] datasets (mean + standard deviation).

Method AVEC 2011 CK+
Accuracy AUC Accuracy AUC
SVM [2] 0.0174 0.0383 0.0257 0.0089
CRF [13] 0.0435 0.0145 0.0390 0.0851
rt-SVM+ [25] 0.0269 0.7683 0.0361 0.0001
SVM+ [28] 0.0035 0.0062 0.0776 0.0026
LIR [31] 0.0043 0.0054 0.0666 0.0025

Table 3. p-values of the proposed method for the AVEC 2011 [23]
and the CK+ [15] datasets.

methods. We may also observe that for this dataset, the
AUC values achieved by the proposed t-CRF+ model are
very high and close to the ideal classifier. In general, the
significantly high increase in all evaluation indices by our
model indicates the strength of the proposed method.

In order to provide a statistical evidence of the recogni-
tion results, we computed the p-values of the obtained re-
sults with respect to the compared methods. The null hy-
pothesis was defined as: the mean performances (accura-
cies or AUC) of the proposed model are equal to the state-
of-the-art methods; and the alternative hypothesis was de-
fined as: the mean performances (accuracies or AUC) of the
proposed model are higher than those of the state-of-the-art
methods. For the assessment of the statistical significance,
we used paired t-tests with statistical significance threshold
p < 0.05 for all experiments. The resulted p-values for both
datasets are reported in Table 3. According to these results,
we conclude that for both datasets the the null hypothesis is
rejected as the p-values were less than the significance level
of 0.05, and thus, the improvements obtained by our model
are statistically significant and not due to chance.

The corresponding ROC curves for both datasets are de-
picted in Fig. 4. The red dotted diagonal line corresponds
to complete random guess. The intersection of the ROC
curve for each method with the black diagonal line, corre-
sponds to the equal error rate (EER). We may see that for
the AVEC 2011 dataset the proposed method has the lowest
EER (0.1141) and for the CK+ the EER is 0.0726, which is
smaller than the state-of-the-art methods.
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Figure 4. ROC curves for AVEC 2011 [23] (top row) and CK+ [15]
(bottom row) datasets (best viewed in color).

Finally, the classification performance of the proposed
method against the baseline methods for each class sepa-
rately on both datasets is depicted in Fig. 5. We may ob-
serve that for AVEC 2011 in three out of four classes the
proposed t-CRF+ method has the highest accuracy. How-
ever, for the valence class the standard CRF model per-
forms slightly better, but still our method outperforms the
rest of the state-of-the-art. For the CK+ dataset, the clas-
sification accuracy on four classes is perfect (100%), but
for the classes sadness and surprise the proposed method
performs worse than the baseline methods, mostly because
some action units are hard to detect.

In general, our method is able to transfer privileged in-
formation to the original space in a more efficient way than
SVM+, rt-SVM+, and LIR. We can also observe that the
proposed method outperforms both the SVM and CRF mod-
els. However, the information that is being transferred may
not always improve the classification in all classes, although
the classification results in each class are relatively high, as
it is mainly a matter of training and testing set size and the
quality/structure of the data.
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Figure 5. Comparison of recognition performance accuracies (%)
of each class for AVEC 2011 [23] (top row) and CK+ [15] (bottom
row) datasets (best viewed in color).

5. Conclusion

In this paper, we addressed the problem of facial ex-
pression recognition in the framework of learning using
privileged information paradigm. We demonstrated that
our method can efficiently exploit additional information
about the training data to transfer the knowledge learned
from privileged to the original feature space for predict-
ing the true class. In contrast to conventional classification
tasks, we observed that the use of privileged information
can lead to superior performance in classifying facial emo-
tions for both accuracy and AUC indices. Moreover, we
tested various forms of data that can be used as privileged.
Experimental results on different publicly available bench-
marks showed improvements over state-of-the-art methods
that may or may not employ privileged information.

In the future, we plan to evaluate our method on mul-
tiple and heterogeneous sources of privileged information
and assess the quality of the privileged information in other
classification problems in biometrics.
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