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ABSTRACT

The accurate segmentation of cells in cervical images is cru-
cial for the recognition of pathological situations and the esti-
mation of their severity. In this work, we investigate the seg-
mentation of both the nucleus and the cytoplasm of each cell
based on two generative adversarial networks (GANs). First,
we detect the location of the nucleus with the extraction of
the nucleus boundaries in each cell, which is obtained by the
training of the Nucleus-GAN. The segmented nucleus area
serves as a guide factor for the definition of the cell boundary,
and it is used as input in the Cell-GAN, for the segmentation
of the cell boundaries. As it is verified by the experimental
results, the proposed method is efficient and leads to accurate
nucleus and cell boundaries, presenting high performance.

Index Terms— Generative Adversarial Networks, Cyto-
logical Image Segmentation, Nuclei Detection, Cell Segmen-
tation.

1. INTRODUCTION

The accurate diagnosis of cervical diseases rely on the ex-
haustive examination of the Pap smear images obtained by
the optical microscope. This procedure is time consuming
and error-prone when it is performed manually. For this rea-
son, several automated methods have been proposed for the
segmentation of the structural parts of the cell, that is the nu-
cleus and the cytoplasm.

Many methods are based on traditional segmentation tech-
niques. These methods exploit the properties of the well es-
tablished segmentation algorithms, such as iterative thresh-
olding [1], level sets [2], mathematical morphology [3] and
physical models [4] in order to obtain the boundaries of the
region of the interest in the image.

Furthermore, methods that are based on deep learning
are constantly developing, providing new powerful tech-
niques which overcome the complexity of cytological images
and provide accurate segmentation and classification of the
cells. Thus, convolutional neural networks (CNNs) have
been applied for the segmentation of single [5] or overlap-
ping [6] cells. Furthermore, fully convolutional networks
(FCNs) techniques [7] and methods that combine traditional

techniques, such as watersheds with CNNs have been also
proposed [8][9].

Another notable category of deep learning models are the
well-known generative adversarial networks (GANs), which
are extensively used in many applications. In this framework
the Cell-GAN [10] has been proposed, which provides reli-
able results. However, a prerequisite for the correct execution
of this method is the prior definition of the guide factor, which
is the location of the nucleus of each cell. In this work, we
automatically define the guide factor based on the Nucleus-
GAN, which is then used as input in the Cell-GAN for the
segmentation of the cells. Experimental results validate the
efficiency of the proposed method, as it is described in the
following paragraphs.

2. METHOD

The segmentation of cervical cell images comprises three
stages: (i) the generation of the guide factors obtained by
the Nucleus-GAN, (ii) the segmentation of the cell produced
by the Cell-GAN, and (iii) a post-processing step in order to
avoid undesirable noise effects in the final cell boundaries.
The overview of the method is depicted in Fig. 1.

Fig. 1: The combination of Nucleus-Gan and Cell-Gan in the
segmentation process. The output of the Nucleus-Gan is used
as input at the Cell-GAN.

2.1. Nucleus-GAN

The first stage is to generate nucleus images that approximate
the boundaries of the original nucleus in the input images.



For this purpose, the Nucleus-GAN is designed based on gen-
erative adversarial networks [11]. Specifically, the Nucleus-
GAN generator produces images of the nucleus while the dis-
criminator tries to distinguish the generated from the real im-
ages, allowing the generator to obtain a probability distribu-
tion of nucleus morphology.

2.2. Cell-GAN

The next step is to extract the boundary of the cell that closely
resembles its shape in the original image. For this purpose, we
adopt the Cell-GAN [10] approach, which results in reliable
segmentation. The Cell-GAN is trained to acquire the proba-
bility distribution of cell morphology through the assessment
of dissimilarities between the single-cell images it generates,
and the ones that are annotated. For the training procedure, it
requires guide factors [12] which indicate the location of the
nucleus in the image. In our work, the guide factors are the
nuclei images generated by the Nucleus-GAN, which contain
the accurate area of the nucleus in each image.

2.3. GANs Architecture

The architectures of Nucleus-GAN and Cell-GAN are de-
picted in Fig. 2 and Fig. 3 respectively. Both networks aim
to produce single-cell images x̂ from cell images x, namely
G : x → x̂. To achieve this, the generator in both networks is
redesigned [10], using the principles of the auto-encoder [13]
and the inception model [14]. However, the architecture of
the discriminator is the same as in the original DCGAN [15].

2.3.1. Generator

The generator architecture of both networks is based on the
autoencoder architecture [13]. It consists of an encoder net-
work and a decoder network. The main structure of the
encoder is a four-layer down-sampling network with Leaky-
ReLU activation, and each layer adopts the inception module
[14].

The use of the inception module aims to capture multi-
scale features at different levels of abstraction within the net-
work. This is achieved by using a combination of different
filter sizes and operations. The sizes of the filter groups are
1×1, 3×3 and 5×5 in order to promote the generalization abil-
ity of the encoder network. The resulting feature maps are
then merged and filtered by a final convolutional layer. Fi-
nally, batch normalization is applied and the resulting feature
map is passed to the next downsampling layer.

Normally, autoencoders use fully connected layers to pass
the information from the encoder to the decoder. Due to the
complexity of the proposed method, this procedure can lead
to an explosive number of parameters. This is why channel-
wise fully connected layers are preferred instead.

The input of the Nucleus-GAN is different from the input
of the Cell-GAN. The first network is fed with an RGB image

showing a cervical cell with its background (203x203x3). It is
then processed by a convolutional layer before being received
by the first layer of the encoder.

On the other hand, the Cell-GAN is fed with two im-
ages, the original cell image, as it is described above, and
the corresponding nucleus image produced by the Nucleus-
GAN, which we refer to as the guide factor. The purpose of
the guide factor is to help the network identify the cell from
its noisy background in the received image. The guide fac-
tor is processed by two convolutional layers, and the resulting
feature map from each layer is merged with the initial image
using additive operations.

The decoder network contains 6-layer upsampling net-
works, each consisting of 3×3 deconvolutions [16] and ReLU
activation. The Sigmoid function is used to replace the ReLU
activation of the last layer network to generate images. To re-
duce the complexity of the networks, the decoder layers are
simple upsampling layers without using the inception model
architecture.

2.3.2. Discriminator

The architecture of the discriminator in both networks is sim-
ilar to DCGAN [15]. It consists of an input layer, five convo-
lutional layers followed by batch normalization and Leaky-
ReLU activation functions, and one output layer that provides
the probability score for the input image to be real or fake.
The output layer uses the Sigmoid activation function instead
of the Leaky-ReLU.

Fig. 2: The architecture of Nucleus-GAN.

Fig. 3: The architecture of Cell-GAN.

2.4. Joint Loss Function

The joint loss function for each network consists of the adver-
sarial loss function and the L2 loss function [17].



The adversarial loss function Ladv expresses the game-like
mechanism used in GANs. However, in this case, the input
to both networks is an image rather than random noise. The
adversarial loss function can be defined as:

Ladv = minG maxD Ex̂∈X̂ [log(D(x̂))] + Ex∈X [log(1−D(G(x)))] (1)

where D is the output of the discriminator and G is the
output of the generator. For the Nucleus-GAN x represents
the cervical cell image and x̂ the annotated nucleus image,
whereas for the Cell-GAN x represents the combination of
the cervical cell image with the corresponding guide factor
and x̂ represents the annotated cell image.

The L2 loss function focuses more on capturing the over-
all structure of the image and can be expressed as:

Lsmi = α∥M ·(X−G(x))∥2+β∥(1−M)·(X−G(x))∥2 (2)

where G is the result of the generator, x is the proper in-
put for each network, X is the corresponding annotated im-
age and M is the binary mask of the annotated image. The
parameters α and β are used to adjust the generating scale of
each network for uncertain cell or nucleus area, retained or
discarded. Finally, the joint loss function is expressed as:

Ltot = γsmi · Lsmi + γadv · Ladv (3)

2.5. Image Post-Processing

The final stage aims to segment the original cell from the input
image using the generated cell image. To effectively segment
the cell from the original image, it is convenient to create a
binary mask of the generated image. The background noise is
limited by image blurring with a bilateral filter. The images
are then converted to grayscale, and a thresholding procedure
is applied, in order to generate the binary image. Finally, all
remaining gaps are filled.

3. EXPERIMENTAL RESULTS

We performed several experiments using the SIPaKMeD
database [18]. The dataset contains 5 types of cervical cells
with a total of 4049 images as shown in Table 1. We included
a data augmentation scheme and each cell image is rotated in
a clockwise manner in four directions, resulting in a total of
16,196 images. Finally, the dataset is divided into a training
set, a validation set, and a test set, with each set correspond-
ing to 80%, 10%, and 10% of the entire dataset respectively.
Indicative results are depicted in Fig. 4

The Pytorch framework is used to construct the Nucleus-
GAN and the Cell-GAN. The Adam optimizer is applied to
train both networks with momentum of 0.5. The number of
training iterations for the Nucleus-GAN and the Cell-GAN
is 196 and 137 respectively, and the learning rate for both
networks is 5× 10−4. For the L2 loss function, both α and β

Fig. 4: Segmentation Results. The first row includes original
cell images. In the second and third row the extracted nuclei
and cells areas are depicted. The fourth row contains the ob-
tained boundaries with the ground truth on the initial images
(green:ground truth, red:cell, white:nucleus). In the fifth row,
the final segmentation of each cell is depicted.

are assigned a value of 1. The joint loss function sets γsmi to
0.1 and γadv to 0.9, encouraging a better overall structure of
the image.

For efficient training, mini-batches consisting of 64 im-
ages were used. In order to avoid overfitting, the output of
each layer network is normalized, and a dropout with a prob-
ability of 0.5 is added to the generator. Finally, to prevent
mode collapse and ensure stable training, the technique of la-
bel smoothing is implemented.

To evaluate the segmentation accuracy of our method,
we compared it with the method proposed in [10]. We used
the same parameters, however the input in our Cell-GAN
is different, since we used as guide factor the output of the
Nucleus-GAN. This improves the performance of the cell
segmentation method and at the same time, it provides a reli-
able nucleus boundary in each cell image. Furthermore, our
trained models do not require the existence of previously an-
notated nucleus images as guide factors, for the segmentation
of the cell. Thus, from a single image, both the nucleus and
the cell boundaries are extracted.

Metrics including True Positive Rate (TPR), False Posi-
tive Rate (FPR), Dice Coefficient (DC) and Intersection over
Union IoU) are calculated, in order to evaluate the efficiency
of our method. Table 2 contains the results of these metrics for
the Original Cell-GAN [10] and our method that combines the
Nucleus-GAN and the proposed improved Cell-GAN. As we
can observed, both methods have good performances as they
have high TPR, DC and IoU and low FPR. Nonetheless, it is
noteworthy that our method has higher TPR, DC and IoU met-



Cell Category #Images Augmentation
Superficial-Intermediate 831 3324
Parabasal 787 3148
Koilocytotic 825 3300
Dysketarotic 813 3252
Metaplastic 793 3172

Table 1: Dataset Composition

Method TPR ↑ FPR ↓ DC ↑ IoU ↑
Original Cell-GAN [10] 0.946 0.031 0.957 0.919
Proposed Cell-GAN 0.953 0.037 0.958 0.921
Proposed Nucleus-GAN 0.970 0.012 0.938 0.895

Table 2: Comparative results of the different methods.

rics obtained by the Cell-GAN. This indicates that our method
exhibits better performance and the segmentation of the nu-
cleus obtained from the Nucleus-GAN, enhances the identi-
fication and generalization ability of the Cell-GAN. Further-
more, the Nucleus-GAN can identify the nuclei boundaries
with high accuracy, as it presents remarkable performance re-
garding to all metrics.

4. CONCLUSIONS

In this paper, we proposed an improved version of the Cell-
GAN which is based on guide factors obtained by the accurate
determination of the nucleus in each image. This is feasible
with the implementation of the Nucleus-GAN, which aims to
produce nucleus images that approximate the original nucleus
in the image, by evaluating their integrity via the probability
distribution of the nucleus morphology. The generated im-
ages of this network serve as indicators of cell positioning
within the initial image, thereby providing reliable input in
Cell-GAN for cell identification.

The combination of these two networks provides a model
that is able to learn the distinct characteristics of the cell and
identify it among the noisy background interference that is
present in many cell images. Additionally, the nucleus and
the cell boundaries are extracted at the same time, provid-
ing a complete segmentation of the structural parts of the cell
in each image. The experimental results indicate that our
method enhances the Cell-GAN performance, providing ac-
curate cell segmentation in an efficient manner.
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