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ABSTRACT

Accurate image registration plays a preponderant role in image

super-resolution methods and in the related literature landmark-

based registration methods have gained increasing acceptance in this

framework. However, their solution relies on point correspondences

and on least squares estimation of the registration parameters neces-

sitating further improvement. In this work, a maximum a posteriori

scheme for image super-resolution is presented where the image

registration part is accomplished in two steps. At first, the low-

resolution images are registered by establishing correspondences

between robust SIFT features. In the second step, the estimation

of the registration parameters is fine-tuned along with the estima-

tion of the high resolution image, in an iterative scheme, using the

maximization of the mutual information criterion. Numerical results

showed that the reconstructed image is consistently of higher quality

than in standard MAP-based methods employing only landmarks.

Index Terms— Super-resolution, image registration, mutual in-

formation, scale invariant feature transform (SIFT).

1. INTRODUCTION

The objective of image super-resolution (SR) is to reconstruct a high-

resolution (HR) image from a sequence of low-resolution (LR) im-

ages. The goal is to improve the spatial resolution by fusing the

set of LR images to produce an image with more visible detail in

the high spatial frequency features. The LR images experiences dif-

ferent degradations such as motion, point spread function blurring,

subsampling and additive noise. The HR image is estimated from

a sequence of LR aliased images which is possible if there exists

sub-pixel motion between the LR images. Thus, each frame of the

LR sequence brings complementary information on the original HR

image.

The direct inverse solution from interpolation, motion compen-

sation and inverse filtering is ill-posed due to the existence of addi-

tive noise, even in cases of perfect motion registration and accurate

knowledge of the point spread function of the acquisition system. A

large family of methods is based on a stochastic formulation of the

problem which imposes a prior distribution on the image to be re-

constructed and provides estimates either in a maximum a posteriori

(MAP) framework, where the posterior distribution of the HR im-

age is maximized [1, 2, 3, 4, 5] or in a fully Bayesian framework by

integrating out any unobserved variables [3, 6, 7, 8, 9, 10].

A key issue in the quality of the super-resolved image is the ac-

curacy of the employed image registration technique. Also, knowl-

edge of the involved motion model facilitates the task. This may

include simple translational, rigid body or affine motion as well as

projective or even photometric transformations. The standard ap-

proach is to estimate the registration parameters separately from the

HR image [4, 5], either by aligning the LR images once, at the be-

ginning of the algorithm or iteratively before or after each update

of the HR image [1, 2]. However, there exist techniques where the

registration parameters are assumed to be random variables and they

are marginalized in a Bayesian formulation [3, 6]. Apart from using

block matching or phase correlation techniques, the majority of the

registration methods used in the SR literature are related to standard

optical flow methods and their variants.

Following the trends in computer vision, feature matching has

also been used [4]. The parameters of the geometric transforma-

tion between the LR images are estimated by automatic detection

and analysis of corresponding features among the input images.

Typically, some hundreds of points of interest, such as the Harris

corner features [4], are detected with subpixel accuracy and corre-

spondences are established by examining the image neighborhoods

around them. Finally, the estimation of the registration parameters

is obtained by optimization of a non linear cost function.

Landmark-based registration is accurate but limited to least-

squares based solutions. In the last fifteen years, the maximization

of the mutual information (MI) has revolutionized image registration

theory and applications as it considers the whole gray level image

information and provides consistently sub-pixel precision [11, 12].

However, to our knowledge, it has not extended its application do-

main to image super-resolution. Probably, the main reason is that

if it is not initialized close to the global maximum, local extrema

impede the registration process [13] and, more importantly, they rule

out subpixel accuracy.

Relying on the above observations, we propose a MAP scheme

for image super-resolution where the registration part is accom-

plished in two steps. At first, the LR images are registered by

establishing correspondences between robust features computed by

the scale invariant feature transform (SIFT) [14]. In the second

step, the estimation of the registration parameters is fine-tuned along

with the estimation of the high resolution image, in an iterative

scheme, by the maximization of the mutual information between the

HR image and each of the upscaled (deblurred and upsampled) LR

images. Numerical results showed that the reconstructed image is

consistently of higher quality than in standard MAP-based methods

employing only SIFT features and this improvement is on average

1.5 dB in terms of peak signal to noise ratio (PSNR).

2. IMAGE FORMATION MODEL

The image degradation process [2] is modeled by motion (rotation

and translation), a linear blur, and subsampling by pixel averaging

along with additive Gaussian noise. We assume that p LR images,

each of size M = N1 ×N2, are obtained from the acquisition pro-

cess. The following observation model is assumed, where all images



are ordered lexicographically

y = Wz+ n (1)

The set of LR frames is described as y = [yT
1 ,y

T
2 , . . . ,y

T
p ]

T , where

yk, for k = 1, ...p, are the p LR images. The desired HR image z is

of size N = l1N1×l2N2, where l1 and l2 represent the up-sampling

factors in the horizontal and vertical directions, respectively. The

term n represents zero-mean additive Gaussian noise. In (1), the

degradation matrix W = [WT
1 ,W

T
2 , . . . ,W

T
p ]

T performs the op-

erations of motion, blur and subsampling. Thus, matrix Wk, for the

k-th frame, may be written as

Wk = DBkM(sk) (2)

where D is the N1N2 × N subsampling matrix, Bk is the N × N
blurring matrix, and M(sk) is theN×N rigid transformation matrix

with parameters (rotation angle and translation vector) denoted by sk
for the k-th frame.

Formulating the super-resolution problem in a probabilistic

framework [1, 2], we define a smooth Gaussian prior for the HR

image:

p(z) =
(α|QTQ|)N/2

(2π)N/2

N
∏

i=1

exp

(

−
1

2
α(Qz)T (Qz)

)

, (3)

where Qz is the Laplacian of image z and parameter α controls

the precision (inverse covariance) and consequently the shape of the

distribution. Given the HR image z and the registration parameters

between the LR images s = {s1, s2, ..., sk}, the likelihood of the

LR images is also a Gaussian [2]:

p(y|z) =
1

(2π)
pM

2 σpM
η

exp

(

−
(y −Wz)T (y−Wz)

2σ2
η

)

, (4)

where σ2
η is the variance of the observation noise n.

Employing a MAP approach and maximizing p(z|y) ∝ p(y|z)p(z)
leads to the following MAP functional to be minimized with respect

to the HR image z and the rigid transformation parameters s:

L(z, s) =

p
∑

k=1

||yk −Wk(sk)z||
2 + λ||Qz||2 (5)

Notice the change in notation to explicitly underpin the dependence

of matrix Wk on the registration parameters sk.

Using a gradient descent method with a properly calculated step

size it can be shown that the update equation minimizing (5) can be

written as

ẑ
n+1 = ẑ

n − εn∇zL(z, s)|z=ẑ
n,s=ŝ

n (6)

Parameter εn is the step size at the n-th iteration which may be ob-

tained in closed form from the data [1]. In general, the estimation

of the regularization parameter λ which depends on the noise stan-

dard deviation σ2
η , and the parameter α controlling the variance in

the prior (3), is a difficult task. In order to avoid a blurred version of

the high-resolution image these parameters are automated computed

from the data as described in our previous work [2].

3. IMAGE REGISTRATION

A standard approach in MAP super-resolution algorithms is to regis-

ter the LR images prior to the computation of the HR image. This is

performed once and the registration parameters are fixed during the

iterative estimation of the super-resolved image. A typical solution

to the registration problem is the computation and correspondence

of corner features [4]. Although the extracted features are robust,

this procedure is prone to small registration errors as the registration

parameters are computed in the least squares sense.

The maximization of mutual information, originally proposed

for medical image registration, is considered to be one of the most

accurate methods for image registration [11, 12] as it provides sub-

pixel accuracy. It relies on gray level information by considering

each image as a random variable.

Let A and B be the two images with marginal probability den-

sity functions (computed from their histograms histograms) pA(a)
and pB(b) respectively. Let also their joint density be pAB(a, b).
The mutual information between A and B measures the degree of

dependence between them and it is defined by

I(A,B) = H(A) +H(B)−H(A,B)I(A,B)

=
∑

a

∑

b

pAB(a, b) log
pAB(a, b)

pA(a) · pB(b)
(7)

where H(A) and H(B) are the marginal entropies of the random

variables A and B and H(A,B) is their joint entropy. If the images

are correctly registered their mutual information is maximized.

In order to provide invariance to the overlapping areas between

the two images, a more robust measure is the normalized mutual

information (NMI) [15]:

NMI(A,B) =
H(A) +H(B)

H(A,B)
. (8)

A drawback of the mutual information (and NMI) is that if it is not

initialized close to the optimal solution it is trapped by local maxima

[13]. To overcome this issue a good initialization is important.

Therefore, we propose to estimate the registration parameters in

two steps. In the first step, the registration procedure is initialized

by a landmark-based registration scheme. To this end, to register the

LR images, we employ SIFT features [14] extracted from the LR

images. SIFT features are generally more robust than corner fea-

tures. Considering a LR image as the reference, the rigid transfor-

mation parameters (translation and rotation) are estimated through

minimization of the mean square error between the locations of the

features between the reference image and each LR image [16]. Thus,

we obtain a good initialization.

In the next step, during the iterative update of the HR image,

a fine tuning of the registration parameters is accomplished by the

maximization of the mutual information between the current esti-

mate of the HR image, provided by (6) and each upscaled LR image.

Upscaling is performed by deblurring (inverse filtering) and upsam-

pling. As the estimate of the HR image changes at each iteration, the

registration parameters are updated based on this estimate. By these

means, the registration accuracy is improved at each iteration step.

The overall algorithm is summarized in Algorithm 1.

4. EXPERIMENTAL RESULTS

In order to evaluate the proposed methodology, experiments were

conducted on synthetic data sets. Sequences of low resolution im-

ages were created by rotating, translating, blurring, down-sampling



Algorithm 1 Super-resolution image reconstruction algorithm.

• Extract SIFT descriptors from the LR images and establish

correspondences.

• Estimate rotations and translations using least squares [16].

• First estimate of the HR image ẑ0 using (6).

• n := 1; ẑn = ẑ0;

• do

– do

∗ Random selection of a LR image yk.

∗ Register by mutual information the upscaled yk to

ẑn.

∗ Update ẑn using (6) only for the the visited yk.

∗ Declare yk visited.

– until all yk are visited.

– n := n+ 1;

– Declare all yk, k = 1, ...p visited.

• until ‖ẑn+1 − ẑn‖/‖ẑn‖ < ǫ or a predefined number of iter-

ations is reached.

and degrading by noise an original image. Translation parameters

were randomly drawn from a uniform distribution in [−3, 3] (in units

of HR pixels) and rotation angles were also uniformly selected in

[−5, 5] (in degrees). The images were then downsampled by a factor

of 2 (4 pixels to 1). Then, a point spread function of 5× 5 Gaussian

kernel with standard deviation of 1 was applied. Finally the result-

ing images were degraded by white Gaussian noise in order to obtain

signal to noise ratios of (i) 20 dB and (ii) 30 dB. In all of the experi-

ments, in order to have a first estimate of the HR image, a LR image

was chosen at random and it was upscaled by bicubic interpolation.

A quantitative evaluation of the obtained HR images is given by the

peak signal to noise ratio (PSNR) defined by:

PSNR = 10 log10
255

||z − ẑ||

where ẑ is the estimated HR image and z is the ground truth.

The numerical results are summarized in table 1, where the mean

values, the standard deviations and the median values of the PSNR

for each image are presented. These values are obtained through

10 random realizations of the experiment in each case. As it can

be seen, the combination of SIFT-based initialization of the regis-

tration parameters followed by fine tuning by the maximization of

the MI criterion provides consistently higher accuracy in terms of

PSNR. This improvement is approximately 1.5 dB on average for

both noise scenarios (20 dB and 30 dB). Representative results of

the reconstructed HR images along with a LR frame is shown in fig-

ure 1.

Convergence of the super-resolution algorithm was achieved

when ‖ẑn+1 − ẑn‖/‖ẑn‖ < 10−5 or until 70 iterations were

reached. Another advantage of the proposed scheme is that not

only the reconstructed HR image is of better quality but also the

algorithm converges faster. This is depicted in fig. 2 where the cost

function (5) is drawn with respect to the iteration number for the

compared methodologies.

5. CONCLUSION

We proposed an image registration framework that improves the per-

formance of super-resolution image reconstruction. The hybrid ap-

proach is based on the synergy of SIFT-based image registration

whose result is forwarded to a maximization of mutual information

algorithm. The first step provides a robust least squares parameter

estimation and the second step of the method achieves a a high pre-

cision registration result. By these means, the main drawback of

mutual information, which is the large number of local maxima is

overcome. Therefore, a solution of high accuracy is obtained for

the super-resolved image and the overall reconstruction algorithm

converges faster than the standard solution based only on landmark

correspondence and registration [4].

Finally, let us notice that we have also tried to register the LR im-

ages by the MI method only, without initialization by the SIFT-based

registration. In all cases the resulting estimation of the registration

parameters was erroneous leading to a HR image of very low quality.
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