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Abstract. High-resolution images play an essential role in the perfor-
mance of image analysis and pattern recognition methods. However, the
expensive setup required to generate them and the inherent limitations
of the sensors in optics manufacturing technology leads to the restricted
availability of these images. In this work, we exploit the information
retrieved in feature maps using the notable VGG networks and apply
a transformer network to address spatial rigid affine transformation in-
variances, such as translation, scaling, and rotation. To evaluate and
compare the performance of the model, three publicly available datasets
were used. The model achieved very gratifying and accurate performance
in terms of image PSNR and SSIM metrics against the baseline method.

Keywords: Image super-resolution · Spatial transformer · VGG · SR-
GAN

1 Introduction

The prospect of obtaining detailed digital high-resolution (HR) images from a
set of low-resolution (LR) observations has been a topic of great interest in both
the fields of signal and image processing [15, 21]. In the last few decades, recent
developments in convolutional neural networks and advancements in GPU tech-
nology have further lowered the barrier to accumulating high-resolution images
and videos. In addition, state-of-the-art machine learning models have made
major breakthroughs in conventional computer vision tasks [12, 17].

Despite the aforementioned improvements, the methods of image and video
super-resolution (SR) available today can be unsatisfying, in the sense that they
fail to match expectations in perceptual quality and computational efficiency
[14, 11]. Nonetheless, the need for high-quality images has remained at large an
essential need for human interpretation of information and machine perception.
In this work, we seek to achieve a feature fine, realistic, and computationally
efficient super-resolution method that brings about quality image enhancement.
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One of the main challenges when it comes to SR methods is the task of gen-
erating high-quality images that are realistic and sensible to human perception.
This problem is difficult in the sense that the quality of the generated images
is affected by multiple factors such as the quality of the input image taken by
the image extracting sensor type, the image spectral and spatial resolution, and
light variations. As a consequence, images generally tend to appear distorted,
and blurry, with noise which SR models seek to adverse. In our approach, we
aspire to develop a robust model that reliably understands this problem and
generates HR images that are invariant to large geometric aberrations.

More specifically, in our approach, we construct a novel robust model that
reliably generates high-resolution images that are invariant to these geomet-
ric aberrations. We call this model, the ST-SRGAN model, which essentially
accounts for the fusion of spatial transformer networks (STN) alongside a super-
resolution generative adversarial network (SRGAN) [11]. Our model exhibits
remarkable performance in common publicly available datasets, as was verified
by the experimental results.

2 Related Work

In the past, the consensus was to approach the SR problem with either statistical,
prediction, or patch-based methods [16, 20, 19]. We can briefly summarize the
related super-resolution methods in two major categories namely (i) learning-
based and (ii) reconstruction-based methods.

Learning-based methods approximate HR images by using neighbor embed-
ding, sparse coding, pixel-based, and example-based methods [24, 6, 7]. On the
other hand, reconstruction-based methods use prior retrieved information to de-
termine the HR limitations such as edge sharpening, regularization, and decon-
volution methods [3, 1, 18]. Nowadays, researchers have substantially suppressed
the limitations of the SR problem, leading to the development of cost-effective
systems that allow researchers to make better use of big data.
Learning-based methods. A case in point is the super-resolution convolu-
tional neural network (SRCNN) [4], which is regarded as the earliest CNN super-
resolution model. The model structure consists of three parts. The first part re-
lates to the extraction of data from the LR image. The second part implements
non-linear mapping, a dimension-reducing method that attempts to retain the
distances between data points as well as possible. Finally, in the third part, the
model super resolves the image and reconstructs its high-resolution counterpart.

Kim et al. [9] showed that increasing network depth resulted in significant
improvements in model accuracy. The VDSR network architecture consists of 20
weight layers which is much deeper than its SRCNN counterpart which only has
three layers. By cascading small filters many times in a deep network structure,
contextual information over large image regions is exploited efficiently. However
using very deep networks, convergence speed would become a critical issue during
training. To counter this problem the model would learn only residuals and
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use extremely high learning rates (104 times higher than SRCNN) enabled by
adjustable gradient clipping.

The limitation of these methods is that increasing the resolution of LR images
before the image-enhancing step may lead to high computational complexity.
This is an especially problematic state for CNNs, where processing speed depends
directly on the resolution of the input image. Furthermore, interpolation methods
that are typically used to accomplish this task (e.g. bicubic interpolation) do not
bring the additional information required to tackle the ill-posed nature of the
SR reconstruction problem.
Reconstruction-based methods. Dong et al. [5] proposed an improvement to
the SRCNN model that uses a post-upsampling reconstruction technique called
FSRCNN. In this approach, feature extraction is performed in the low-resolution
space. In addition, FSRCNN also uses a 1 × 1 convolutional layer after feature
extraction to reduce the computational complexity cost by reducing the number
of channels required. FSRCNN has a relatively shallow network which makes it
easier to learn about the effect of each component. This model is even faster
with better-reconstructed image quality than the previous SRCNN.

Nonetheless, for problems where LR images need to be upscaled by large
factors (i.e., 8×), regardless of whether the upsampling is complete before or after
passing through the deep SR network, the results are bound to be suboptimal. It
makes more sense to progressively upscale the LR image in such cases to finally
meet the spatial dimension criteria of the HR output rather than upscaling by
8× in one shot. To this end, Lai et al. [10] proposed that the sub-band residuals
of HR images can progressively be reconstructed. Sub-band residuals refer to
the differences between the upsampled image and the ground truth HR image
at the respective level of the network.

3 Method

Image SR methods aim to reconstruct high-resolution images given a set of low-
resolution observations. In this section, we elaborate the details of the proposed
ST-SRGAN method and describe the architectural units and training objectives.

3.1 Image Model Formulation

Since digital imaging systems are subject to hardware limitations, images are
often degraded due to these limitations. The captured image may often be dis-
torted by motion blur or additive noise because of the limited time window
during the sensor of the image-capturing system is open. This problem is posed
in its linear form as:

yk = Wkz+ n , (1)

where yk ∈ RM×N is the k-th LR image, with k = 1, . . . , p. The desired HR
image z ∈ Rr1M×r2N , where r1 and r2 are the up-scale factors in the horizontal
and vertical directions, respectively. The degradation matrix Wk = DkBkMk
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Fig. 1. Overview of the proposed ST-SRGAN architecture. First, the LR images are
passed over the VGG network to extract a feature map and a spatial-transformer net-
work is used to assess the affine transformations. Once the images have been aligned
correctly, the generator module generates the estimated HR image. Finally, the gener-
ated HR image is detected as real or fake by the discriminator network based on real
high-resolution images.

for the k-th frame performs the operations of (i) a motion matrixM that includes
rigid transformation parameters such as rotation angle and translation vector,
(ii) a blurring matrix B, and (iii) a sub-sampling matrix D. Finally, n is additive
Gaussian noise. Note that all images are ordered lexicographical order.

3.2 Proposed Approach

We propose a spatial transformer-enhanced SRGAN network (ST-SRGAN) to
address the aforementioned limitations of CNN-based methods. More specifically,
we design a generator network to model the relationship among different views
of an LR image to capture the relevant perceptual information in a robust and
geometrically invariant way. Compared to traditional CNN-based methods, this
model can discriminately incorporate information from multiple angular views,
noisy, and in general spatially distorted images. The transformer works as an
added self-attention mechanism to the generator network. The architecture of
the proposed ST-SRGAN network is depicted in Fig. 1.

The LR images are first examined by the VGG network which extracts high-
quality feature maps from LR images, that may be used to generate their high-
resolution counterparts. The localization network takes the input maps retrieved
by the VGG network and outputs the parameters of the affine transformations
that should be applied to the feature maps. Following this procedure, the spatial-
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transformer processes these feature maps. Then, the grid generator proceeds to
generate a grid of (x, y) coordinates using the parameters of the affine transfor-
mation that correspond to a set of points where the input feature map should
be sampled to produce the transformed output feature map followed by a bilin-
ear interpolation. The correctly aligned images are then fed into the generator,
which then generates the estimated HR image. Using real high-resolution images
and the generated HR images, the discriminator network predicts whether an
image given by the generator is real or fake.

The generator and discriminator units work similarly to the original SRGAN
architecture. However, compared to traditional GAN approaches it should be
noted that the capabilities of the proposed discriminator are hampered by adding
Gaussian noise layers in between the original layers of the model. This improves
the performance of the model as a strong discriminator model is proven to work
as a step function that hinders the result by producing no useful gradients to
update the generator. Finally, dropout layers are also used.
Spatial-Transformer Module. Existing super-resolution methods do not
consider that, when image transmission is over noisy channels, the effect of any
possible geometric transformations could incur significant quality loss and dis-
tortions. To address this problem, the proposed model is formulated as a fusion
of the SRGAN [11] and the spatial-transformer network [8]. This allows the
development of a robust, spatially-transformed deep learning framework that
is able to simultaneously perform both geometric transformations and image
super-resolution. The reason for using the spatial-transformer network is that
it provides model invariance when it comes to spatial transformations of LR
images such as rotation, translation, and scaling.

More specifically, the spatial-transformer module consists of three main com-
ponents, namely, (i) the localization network, (ii) the sampling grid generator,
and (iii) bilinear interpolation. The localization network input corresponds to a
4D tensor representation of a batch of LR images yk ∈ RM×N×C , where C is
the number of channels. The network contains a few convolutional layers and a
few dense layers. Its output prediction consists of the parameters of transforma-
tion matrix Wk. These parameters are used to determine the input feature map
transformations that the network must estimate, such as the rotation angle of
the input LR images, the amount of translation, and the scaling factor required
to focus on the region of interest in the input feature map.

Then, the sampling grid generator predicts the transformation parameters
which are in turn used in the form of an affine transformation matrix of size 2×3
for each LR image in the batch. Thus, we obtain a sampling grid of transformed
indices: (

xsi
ysi

)
= Tθ (Gi) = Aθ

xti
yti
1

 =

[
θ11 θ12 θ13
θ21 θ22 θ23

]xti
yti
1

 , (2)

where Tθ (Gi) represents the transformation of grid Gi = (xti, y
t
i) of the target

coordinates of the regular grid in the output feature map and (xsi , y
s
i ) are the

source coordinates in the input feature map. Matrix Aθ corresponds to the affine
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transformation and the parameters θ represent the rotation angles, translation
and scale parameters of each LR image in the batch. Finally, a bilinear inter-
polation on transformed indices is performed to estimate the pixel value at the
transformed point (xti, y

t
i) using the four nearest pixel values. For example, a

point (1, 1) after a counter clockwise 45◦ rotation of its axes, becomes (2, 0).
Residual Network Module. In our approach, layers are reformulated as
learning residual functions with reference to the layer inputs instead of learning
unreferenced functions. Each residual block can be expressed as a sequence of
the following equations:

yl = h (xl) + F (xl,Wl) , (3)

xl+1 = f (yl) , (4)

where xl and xl+1 are the input and the output of the l-th block, F is a residual
function, h(xl) is an identity mapping function and f is a ReLU function. The
main idea behind this sequence is to learn the additive residual function F
with respect to the h(xl), taking advantage of an identity mapping function
h(xl) = xl. To formulate an identity mapping f(yl) = yl, activation functions
ReLU and batch normalization are considered as the “preactivation” of the weight
layers, while traditional techniques considered them as “post-activation”.
Generator and Discriminator Module. The generator contains the resid-
ual network module, instead of deep convolution networks because residual net-
works are easy to train and allow to be substantially deeper to generate better
results. During training, an HR image is down-sampled to a LR image. The gen-
erator unit then tries to up-sample the image from low to high resolution. After
the image is passed into the discriminator, the latter tries to distinguish between
a ground-truth super-resolution and the estimated HR image and generates the
adversarial loss which is then backpropagated into the generator unit.

The discriminator unit implements LeakyReLU as activation. The network
contains eight convolutional layers with of 3 × 3 filter kernels, increasing by a
factor of two from 64 to 512 kernels. Strided convolutions are used to reduce
the image resolution each time the number of features is doubled. The resulting
512 feature maps are followed by two dense layers with a leakyReLU applied
between those two layers and a sigmoid activation function is used to obtain a
probability for sample classification.

3.3 Training Objective

Content loss: In this work, we used two types of content losses. The first one
is the pixel-wise MSE loss LSRMSE of the residual network module, which is the
most common MSE loss for image SR. However, MSE loss is not able to deal
with high-frequency content in the image which resulted in producing overly
smoother images.

LSRMSE =
1

r1Mr2N

r1M∑
i=1

r2N∑
j=1

(zi,j −GθG (yi,j))
2
. (5)



ST-SRGAN for Image Super-Resolution 7

The second loss is the VGG loss, which is based on the ReLU activation layer
of the pre-trained VGG-19 network. Here the VGG network works as a feature
extractor and the feature map φ(·) that is extracted is used in the loss function.

LSRV GG =
1

MN

M∑
i=1

N∑
j=1

(
φ (z)i,j − φ (GθG (y))i,j

)2
. (6)

Adversarial Loss: The adversarial loss forces the generator to generate an
image more similar to the HR image by using the discriminator to differentiate
between ground-truth and the estimated HR image.

LSRG =

N∑
i=1

− logDθD (GθG (y)) . (7)

The total loss is computed as the sum of all the individual losses:

LSRtot = LSRMSE + LSRV GG + λLSRG . (8)

where λ = 10−3 controls the importance of the LSRG term in the total loss. This
loss is preferred over the mean-squared error loss because we do not care about
the pixel-by-pixel comparison of the images. We are mostly concerned about the
improvement in the quality of the images. Hence, by using this loss function in
the ST-SRGAN model, we are able to achieve high-quality results.

4 Experiments

Data Selection In this study, the CelebA Dataset is used [13] for training
purposes. This dataset is a large-scale face attributes collection with more than
200K celebrity photographs, each with 40 attribute annotations. The images
cover background clutter and large pose variations. Furthermore, Set5 [2] and
Set14 [23] datasets were also used for testing.
Evaluation Metrics To evaluate the SR reconstruction results, (i) the peak-
signal-to-noise-ratio (PSNR), (ii) the mean squared error (MSE) of the original
image and the degraded image, and (iii) the structural similarity index (SSIM)
[22] were used.
Training Details and Parameters The network was trained on an NVIDIA
Titan XP GPU using a random sample of 10K images from the CelebA dataset.
These images are distinct from the testing images. To obtain the 64×64 LR and
256× 256 HR images, we down-sampled and up-sampled respectively using the
OpenCV library. The same applies to different upscaling factors (i.e., 2×, 3×,
and 4×) used for the evaluation of the proposed method.

The LR and HR input image range is scaled to [−1, 1] because we are using
the tanh activation function. The MSE loss was thus calculated on images of
intensity range [1, 1]. Note that the VGG-22 network is used to extract the
feature maps of the dataset images. Also, batch sizes of 1, 4, and 8 were used
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Table 1. Experimental results for Config 1 variants (i.e., c1-a, c1-b, and c1-c with
different up-scaling factors).

Up-scale factor 4× 3× 2×
Configuration c1-a c1-b c1-c c1-a c1-b c1-c c1-a c1-b c1-c
Batch size B = 1 B = 4 B = 8 B = 1 B = 4 B = 8 B = 1 B = 4 B = 8

PSNR ↑ 22.43 27.32 29.46 24.36 25.83 28.81 19.98 22.81 25.94

SSIM ↑ 0.88 0.92 0.94 0.89 0.91 0.93 0.87 0.88 0.90

MSE ↓ 0.28 0.24 0.22 0.38 0.32 0.23 0.23 0.21 0.16

and Adam optimizer is used with a learning step of 2 × 10−4 and decay rates
β1 = 0.5 and β2 = 0.999, respectively.

The generator network is comprised of 16 residual blocks. In addition, dropout
and Gaussian noise layers were added to the discriminator to avoid the vanishing
gradient problem. The spatial-transformer module was applied prior to the con-
volutional layer of the generator and after receiving the extracted feature maps
using the VGG-22 architecture. The localization network to the identity trans-
formation of the spatial-transformer module was initialized before the training
process and while building the generator network. Note that the MSE-based SR-
ResNet network was employed as initialization to the generator network to avoid
undesired local optima. The variant configurations were trained with 5×100 iter-
ations in which the generator and discriminator have been trained alternatively
between iterations.

4.1 Experimental Results

Image reconstruction measurements are accomplished via the PSNR, MSE (%),
and SSIM (%) metrics. Parameter B represents the batch size of the experiment.
In the tables below, we affirm the experimental results of various configurations
made to evaluate our model i.e., namely Config 1 and Config 2 and their varia-
tions. These values are obtained through 5 random realizations of the experiment
in each case.

– Config 1 . This configuration consists of three variants namely, c1-a, c1-b,
and c1-c that represent the behavior of the model when the input images
suffer from blurring and additive Gaussian white noise for batch sizes of
1, 4, and 8. Finally, for each configuration, different up-scaling factors of
4×, 3×, and 2× were applied, respectively. The performance of the different
configurations is shown in Table 1.

– Config 2 . This configuration comprises also three variants namely, c2-a, c2-
b, and c2-c that represent the behavior of the model when the input images
suffer from blurring, additive Gaussian white noise, and spatial translations
and rotations with batch sizes of 1, 4, and 8. For each configuration, dif-
ferent up-scaling factors of 4×, 3×, and 2× were employed, respectively.
Quantitative results are summarized in Table 2.
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Table 2. Experimental results for Config 2 variants (i.e., c2-a, c2-b, and c2-c with
different up-scaling factors).

Up-scale factor 4× 3× 2×
Configuration c2-a c2-b c2-c c2-a c2-b c2-c c2-a c2-b c2-c
Batch size B = 1 B = 4 B = 8 B = 1 B = 4 B = 8 B = 1 B = 4 B = 8

PSNR ↑ 17.85 18.38 20.84 18.28 19.84 22.74 19.01 21.85 21.75

SSIM ↑ 0.86 0.87 0.90 0.85 0.92 0.92 0.87 0.92 0.92

MSE ↓ 0.28 0.26 0.21 0.28 0.24 0.19 0.19 0.15 0.16

Table 3 shows a comparison of the nearest neighbor, bicubic, and SRGAN
with the proposed method on benchmark data. The results confirm that the
proposed ST-SRGAN methods outperform all reference methods regarding to
the evaluation metrics. The values in bold indicate the best-quality reconstructed
images. However, it is worth noting that visual inspection remains the main
method to perform assessment for SR methods. Finally, visual results of the
reconstructed HR images with 4× up-scaling are depicted in Fig. 2. As it can
be observed, from LR images (first column), our method produces high-quality
images (last column), which are a reliable and accurate approximation of the
original image (middle column). Furthermore, our method overcomes both the
limitations of blurring/noising and spatial translations and rotations.

Table 3. Comparison of NN, bicubic, and SRGAN [11] with 4× up-scaling.

Config 1 Config 2
NN Bicubic SRGAN [11] ST-SRGAN NN Bicubic SRGAN [11] ST-SRGAN

PSNR↑ 26.26 28.43 29.40 29.46 17.14 19.01 20.80 20.84

SSIM ↑ 0.76 0.82 0.85 0.94 0.67 0.72 0.90 0.90

5 Conclusion

We introduced a novel spatial transformer GAN network to solve the problem of
image super-resolution. In this work, we aimed at showing the robustness of pair-
ing a SR network with the spatial transformer network for estimating transfor-
mation parameters between LR images. CNN-based SR algorithms, such as the
SRGAN can be massively improved when paired with spatial transformers. The
spatial transformations applied to three publicly available image datasets were
successfully learned by the network and this is further evaluated by performance
metrics. In our experiments, 64×64 distorted face images were up-sampled in var-
ious degrees of up-scaling (e.g., 2×, 3×, and 4×). Moreover, the proposed method
is not limited to its use in face SR but other image datasets. The robustness of
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LR image Original HR image ST-SRGAN image

Fig. 2. Reconstructed HR images with 4× up-scaling.
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the proposed model in spatial invariance is the reason behind its supremacy
compared to baseline and state-of-the-art methods in super-resolution.

Furthermore, the cost of adding a spatial transformer model to our network
is negligible. There are almost no extra computational costs in time and the
size of the information required to process their trainable variables. The spatial
transformer module has proved to be very powerful and very useful and its total
potential is yet to be realised. In future work, we intend to extend the model
for video super-resolution and exploit the spatiotemporal information found in
between concurrent frames.
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