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ABSTRACT
In this work, we solve the problem of motion representation in
videos, according to local transformations applied to specific key-
points extracted from static the images. First, we compute the co-
ordinates of the keypoints of the body or face through a pre-trained
model, and then we introduce a convolutional neural network to
estimate a dense motion field through optical flow. Next, we train
a generative adversarial network that exploits the previous informa-
tion to generate new images that resemble as much as possible the
target frames. To reduce trembling and extract smooth movements,
our model incorporates a low-pass spatio-temporal Gaussian filter.
Results indicate that our method provides high performance and the
movement of objects is accurate and robust.

Index Terms— Video-synthesis, Animation, GANs, Gaussian
filter, Dense motion

1. INTRODUCTION

Nowadays, animation constitutes the main domain in graphics and
visual effects for various applications in film and video game pro-
duction. One of the most interesting tasks in animation is the imple-
mentation of models reproducing a video from static images. Tradi-
tional approaches for motion picture representation and video redef-
inition designed for specific areas such as human faces [1, 2, 3, 4],
human silhouettes [5, 6, 7], and gestures [8] and required detailed
prior knowledge of the objects that are represented. As these tech-
nologies are constantly improving, the range of possible applications
is increasing [9].

In [10], realistic results were produced, based on 3D face mod-
els using optimization reconstruction algorithms. The representation
of motion can also be treated as a transfer problem from one optical
field to another. Isola et al. [11] investigated conditionally competi-
tive neural networks in image-to-image transfer problems.

Wang et al. [7] relied on image-to-image transfer technique [11]
and transfered human motion extending it to a video-to-video trans-
fer problem using a GAN model. In this direction, Bansal et al.
[12] extended these methods with conditionally generative adversar-
ial networks (Recycle-GAN), incorporating spatio-temporal data to
improve video-to-video transmission by one sector to another.

Models which do not require prior information, have also been
proposed, such as X2Face [13]. This model can regulate a source
face using another face as a guide-frame to create a new frame, that
will have the same identity as the source frame but the posture and
facial expression will be similar to the contents of the guide frame.
Siarohin et al. [14] introduced the Monkey-Net, a self-monitoring
frame for representing the motion of arbitrary objects using sparse
trajectories of keypoints. In a more recent study [15], the first or-
der motion model is proposed. Similar to Monkey-Net [14], sparse

orbits of keypoints are calculated in an unsupervised manner but on
the contrary with Monkey-net, the movement of objects is modeled
in the neighborhood of each keypoint through local affine transfor-
mations. Furthermore, a generator is introduced, which adopts an
occlusion mask to indicate the parts of the objects that may be pro-
duced through image deformation, and it also extends the loss of
symmetry commonly used for feature detector training to improve
the assessment of local affine transforms [16, 17].

Finally, in [18] the animation of people in clothing as a func-
tion of body pose is implemented. The learning is achieved directly
from scans, complex clothing is modeled and pose-dependent details
for realistic animation are produced. Extensions of the synthesis of
videos for the extraction of 3D models [19] have also been reported.

In our work, we have included objects such as human bodies
and faces. The motion representation is based on videos that act as
guides and the images are transformed according to the movements
of the objects in the corresponding frames of a driving video. Note
that there is no prior information or ground-truth data for the target
object, as the establishment of ground truth data is a limitation in
this kind of applications. To address this problem, we investigate
alternatives for the training of neural networks in an unsupervised
manner. In the present work, we have developed convolutional neu-
ral networks and a generative adversarial network, which are trained
to create new images that will construct the video animation of our
target. Our method can produce videos of static objects that move
in a similar way to the movement of another object in a video guide,
with high performance.

2. METHODS

2.1. Keypoint Detection

To cope with the complex movement of the target object, we use a
keypoint representation consisting of a set of keypoints and their lo-
cal affine transformations. We compute the keypoints that represent
specific parts of the body or face (e.g., hand, shoulder, and eyes). To
this end, we used the pre-trained model of Fang et al. [20] that rec-
ognizes and computes the positions of multiple human bodies even
if the boundary frames of the target objects are inaccurate.

The VGG SSD-512 model was used as a human detector since
it has an excellent performance in object recognition. The stacked
hourglass model [21] was also used as a human pose estimator and
the ResNet-18 network as a tracking network.

2.2. Video Motion Composition Using Local Transformations

During training, pairs of images of H × W dimension that repre-
sents two random frames from the same video are given as input
to the proposed model. One frame is denoted as the source image



S ∈ R3×H×W and the other as the driving image D ∈ R3×H×W .
Using the driving image as ground truth data, the network is trained
to produce a new target image that represents the same motion. Next,
the keypoints of the two images are used to estimate the relative mo-
tion of the pixels. The motion network is modeled by a function
TS←D : R2 → R2 that assigns each pixel in the driving frame D
to its corresponding position in the source frame S. The function
TS←D is also referred as backward optical flow from the driving
frame D to the source frame S.

In both transformations, we obtain sparse trajectories from key-
point movements. The dense motion network combines local affine
transformations to obtain the dense motion field T̂S←D. Also, the
motion network computes an occlusion mask ÔS←D which shows
which parts of the frame D can be reconstructed by distorting the
source image S and which parts should be inpainted based on the
surrounding context. Finally, the generator computes a new image
of the source image object that contains the same motion patterns as
the driving video. We use a generator network G that distorts the
source image according to T̂S←D and inpaints the parts of the image
that are not visible in the source image. In Fig. 1 an overview of the
proposed approach is presented.

The motion module computes the backward optical flow TS←D

from a driving frame D to a source image S. To process frames D
and S independently, we assume that there is an abstract reference
frame R. This frame is an abstract concept that is never explic-
itly computed. The abstract frame is used because, during the test,
the model takes pairs of images of heterogeneous visual represen-
tations. To estimate the transformation TS←D, we have to estimate
TS←R and TR←D. Given a frame X, we compute each transforma-
tion TX←R at the keypoints. Assume that p1, ..., pK are the coordi-
nates of the keypoints in the reference frame R. The motion function
TX←R is represented by its values at each keypoint pk:

TX←R(p) = TX←R(pk) +
(

d
dp
TX←R(p)|p=pk

)
(p− pk) + o(||p− pk||) . (1)

To compute the transformation TR←X = T −1
X←R we assume that

TX←R is locally one-to-one at each keypoint neighborhood. Our
purpose is to estimate the transformation TS←D near the keypoint
zk in frame D, provided that zk is the pixel location of the corre-
sponding pixel to location pk in frame R. First, we compute the
transformation TR←D near the keypoint zk in the driving frame D.
Then, TS←D is estimated using the Taylor expansion as follows:

TS←D(z) ≈ TS←R(pk) + (z − TD←R(pk)) . (2)

In fact, the transformations TS←R and TD←R represent the key-
points that have already been estimated. Thus, pk = TR←D(zk).
Then we compute the transformation TS←R near pk in the reference
frame R. The transformation TS←D is obtained as follows:

TS←D = TS←R ◦ TR←D = TS←R ◦ T −1
D←R . (3)

2.3. Image Inpainting Under Occlusions

The source image S is not pixel-to-pixel aligned to the driving image
D̂. Thus, to address this misalignment, we use a distortion technique
similar to [14, 22]. After applying two down-sampling convolutional
blocks to the prediction estimated by the hourglass model [21], we
obtain a feature map ξ ∈ RH×W . Next, we distort the map ξ ac-
cording to the transformation T̂S←D. In the presence of occlusions
in the source image S, the optical flow may not be able to produce
the image D̂. Parts of the source image S cannot be recovered by
simply distorting and transforming it and must be repainted.

An occlusion map ÔS←D ∈ [0, 1]H
′×W ′ is estimated that rep-

resent the pixels that should be inpainted. The occlusion map limits
the effect of certain keypoints that correspond to the occluded parts.

ξ′ = ÔS←D � f(ξ, T̂S←D) , (4)

where f(·, ·) denotes the distortion function and � denotes the
Hadamard product.

2.4. Training Losses

Perceptual loss: The perceptual loss [23] relies on high-order fea-
tures performed by a pre-trained VGG-19 network used for image
classification. During training the perceptual loss measures image
similarities which are more reliable than losses estimated per pixel.

Lper(D̂,D) =

I∑
i=1

‖Ni(D̂)−Ni(D)‖ , (5)

where D is the driving frame, D̂ is the corresponding reconstructed
frame, Ni(·) is the i-th channel feature of a specific VGG-19 layer,
and I is the number of feature channels at this layer.

Keypoint matching loss: Keypoint matching loss helps to sta-
bilize the training. Consider two images I and J which are frame
images derived from the same video and Ĵ the generated image.

Lkm = E(I,J)

[
‖Di(Ĵ⊕O′)−Di(J⊕O′)‖1

]
, (6)

whereDi indicates the i-th layer of feature extraction in the discrim-
inator and O′ denotes the occlusion map.

Discrimination loss: We use the discriminator in which is given
as input the occlusion map of the keypoints in the image I merged
either with the true image J or the generated image Ĵ. The genera-
tor is trained to reconstruct the J frame from the coordinates of the
keypoints and the I image.

LD
GAN = EJ

[
(1−D(J⊕O′))2] + E(I,J)[D(Ĵ⊕O′)2

]
, (7)

where ⊕ indicates the union along the channel axis.
Generator loss: Similar to the discriminator loss, we compute

the generator loss as follows:

LG
GAN = E(I,J)

[(
D(Ĵ⊕O′)− 1

)2]
. (8)

The total loss is computed as the sum of all the individual losses:

Ltot = λLper + λLkm + LD
GAN + LG

GAN , (9)

where λ controls the importance of the two terms in the total loss. In
our experiments, λ = 10 according to [24].

2.5. Gaussian Filtering in the Field of Space-Time

To improve the visual results of our experiments, we incorporated in
our model, after the generation module, Gaussian filtering in space
and time. We used a low-pass spatio-temporal Gaussian filter on the
time-axis of all generated video sequences.

G(x, y, t) = 1

σ
√
2π
e
−(x2+y2+t2)

2σ2 , (10)

where σ is the standard deviation. The Gaussian filter removes noise
and blurs the movements of the object of interest along time. It acts
as a motion stabilizer by eliminating the trembling of the image and
thus a smoother motion of the video objects is feasible.



Fig. 1: Overview of the proposed motion network. A source image S and a frame of the driving video D are given as inputs to the model. The
keypoint detection module computes keypoints in an unsupervised manner. The dense motion module generates the optical flow T̂S←D and
estimates the occlusion map ÔS←D. The generation module estimates the target image and a Gaussian filter is applied to the output target.

3. EXPERIMENTAL RESULTS

3.1. Datasets

Tai-Chi-HD: The Tai-Chi-HD dataset [25] includes 252 videos for
training and 28 videos for testing. Some of them have split into
different clips and we finally collected 1072 training videos and 86
test videos. We used 150 epochs for training and 13 keypoints.

Fashion Video: The Fashion Video dataset [26] includes 499
videos for training and 99 videos for testing. The number of epochs
in training set is 100 and we computed 13 keypoints.

VoxCeleb: VoxCeleb dataset [27] contains 22, 496 videos, some
of them have been split into different clips, so we finally collected
831 training videos and 506 test videos. The number of epochs in
training set is 150 and 11 keypoints were computed.

3.2. Implementation Details

All our experiments were performed on an AMD Ryzen 5 2400G
octa-core processor with Radeon Vega Graphics with 15.6 GB of
RAM at 1517,709 MHz and an Nvidia Titan V GPU graphics card
with 12 GB of memory. The Gaussian filter of size 3×3 and standard
deviation σ = 2.5 was used for all datasets.

For, both the Tai-Chi-HD and VoxCeleb datasets, the total num-
ber of training epochs was 150 and for the Fashion Video dataset
the total number of training epochs was 100, respectively. Also, the
Adam optimizer with 2e− 4 training rate was used to train the neu-
ral network and the batch size was set to eight. Finally, we applied
a decay by a factor of 0.1 in training rate after the 60th and 90th
epochs.

Performance Metrics: The performance of our method is esti-
mated following the protocol proposed by Siarohin et al. [15] since
there are no ground-truth data. In our case, we reconstruct the input
videos by combining the first video frame with the representations
of the movements in each subsequent frame. The metrics that were
used are i) the pixel loss (or L1), ii) the average Euclidean distance
(AED), and ii) the structural similarity index (SSIM) [28].

3.3. Comparison with State of the Art

In Table 1, we observe the results of our method, in terms of L1,
AED, and SSIM for all datasets. As it can seen, the incorporation of
the Gaussian filter in our model leads to better performance.

We compared our model with two state-of-the-art models, the
Monkey-Net [14] and the First Order Motion Model (FOMM) [15]

Table 1: Experimental results for Tai-Chi-HD [25], Fashion Video
[26], and VoxCeleb datasets [27].

Dataset Metric w/ GF w/o GF

Tai-Chi-HD [25]
L1 (%) 5.63 5.79
AED (%) 15.50 15.52
SSIM (%) 76.50 75.46

Fashion Video [26]
L1 (%) 2.26 2.48
AED (%) 9.88 9.70
SSIM (%) 92.38 91.52

VoxCeleb [27]
L1 (%) 5.40 5.65
AED (%) 17.31 17.35
SSIM (%) 82.75 80.71

Table 2: Comparison of the different models on the Tai-Chi-HD [25]
and VoxCeleb [27] datasets.

Method Tai-Chi-HD [25] VoxCeleb [27]
L1 (%) AED (%) L1 (%) AED (%)

Monkey-Net [14] 7.7 22.8 4.9 19.9
FOMM [15] 6.3 17.9 4.3 14.0

Ours w/o GF 5.8 15.5 5.7 17.4
Ours w/ GF 5.6 15.5 5.4 17.3

Quantitative results are reported to Table 2. We observe that our
full model corresponds better than FOMM [15] in Tai-Chi-HD data
set. Both the L1 pixel loss and the AED are smaller than the cor-
responding ones of FOMM and Monkey-Net values. Regarding the
VoxCeleb dataset, our model presents comparable results with the
other two models. FOMM results were slightly better but our model
exhibits better results in terms of AED, compared to Monkey-Net.

Figure 2 illustrates a qualitative comparison between the pro-
posed and state-of-the-art methods for the Tai-Chi-HD dataset. In
comparison with the competitor methods, both variants of the pro-
posed method (i.e., w/ and w/o GF) manage to produce better visual
results, where every part of the body is animated separately.

Figure 3 shows the quality results at a random instance of the
videos for all three datasets. The black regions on the occlusion
mask indicate the parts that cannot be retrieved from the source im-
age and need to be inpainted. The processing time mainly depends
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Fig. 2: Qualitative comparison with state of the art for the Tai-Chi-
HD [25] dataset.

Fig. 3: Indicative qualitative results of our method. Rows (upper to
lower): Tai-Chi-HD [25], Fashion Video [26], and VoxCeleb [27].
Columns (left to right): source frame, guide frame, resulted frame,
occlusion mask, extracted frame with Gaussian filter.

on the size of the available dataset and the computational sources that
are used for the training of the neural network. The average training
time for Tai-Chi-HD and Fashion Video datasets is 120 hours and
for the VoxCeleb dataset is 192 hours.

Ablation Studies: Furthermore, according to the ablation study
of [15], we compared several versions of our model: (i) baseline
(BL), (ii) baseline with occlusion mask (OCC), (iii) pyramid (PYR),
and (iv) Full. In the first two cases, the model is trained with-
out and with the occlusion mask respectively, with images of size
256×256. In the pyramid version, the training follows the base-
line model, but with images of four different resolutions (256×256,
128×128, 64×64, 32×32). The full version combines the last three
aforementioned models.

In Table 3, the ablative results for the Tai-Chi-HD dataset are
contained. The best results are obtained with the full model w/ GF
for L1 = 5.63%, AED = 15.50%, and SSIM = 76.50%. It must
be noted that for the metrics L1 and SSIM, the results are better with
the incorporation of the Gaussian filter for all the models.

In Table 4, we obtain similar results for the Fashion Video data
set. From the ablation study, the full model provides the best re-
sults with the incorporation of the Gaussian filter L1 = 2.26%,
AED = 9.88%, and SSIM = 92.38%. Also, the SSIM index

Table 3: Quantitative ablation study for Tai-Chi-HD dataset [25]
with (w/ GF) and without (w/o GF) Gaussian filter.

Model L1 (%) AED (%) SSIM (%)
w/ GF w/o GF w/ GF w/o GF w/ GF w/o GF

BL 5.91 6.07 15.79 15.82 76.26 75.25
OCC 5.75 5.91 15.53 15.64 76.65 75.67
PYR 5.66 5.83 15.61 15.40 76.10 74.98
Full 5.63 5.79 15.50 15.52 76.50 75.46

Table 4: Quantitative ablation study for Fashion Video data set [26]
with (w/ GF) and without (w/o GF) Gaussian filter.

Model L1 (%) AED (%) SSIM (%)
w/ GF w/o GF w/ GF w/o GF w/ GF w/o GF

BL 2.49 2.65 10.30 12.00 92.16 91.25
OCC 2.46 2.62 9.95 11.60 92.28 91.37
PYR 2.41 2.57 9.90 9.80 92.32 91.43
Full 2.26 2.48 9.88 9.70 92.38 91.52

Table 5: Quantitative ablation study for VoxCeleb dataset [27] with
(w/ GF) and without (w/o GF) Gaussian filter.

Model L1 (%) AED (%) SSIM (%)
w/ GF w/o GF w/ GF w/o GF w/ GF w/o GF

BL 5.62 5.77 17.40 17.52 81.97 79.40
OCC 5.51 5.69 17.33 17.46 82.77 80.32
PYR 5.59 5.71 17.38 17.50 82.34 80.10
Full 5.40 5.65 17.31 17.35 82.75 80.71

is close to one, which means that images are almost identical to the
target images.

Finally, in Table 5, the results in the VoxCeleb data set are
shown. We may conclude that the model with the Gaussian filter
outperforms the model without it, in terms of all metrics.

4. CONCLUSIONS

In this paper, we proposed a video motion representation method
where the object of study can move in the same way as an object
moves in a driving video. In contrast to other works (e.g., [14, 15]),
our model does not require the computation of Jacobian matrices for
the estimation of local transformations of the movements between
the source and the driving video. Moreover, an additional step of
low-pass Gaussian spatio-temporal filtering improved the results re-
markably in all three datasets and also acted as a stabilizer factor
leading thus to smoother motion in the output video without any
flickering.
Acknowledgments: The authors gratefully acknowledge the support of NVIDIA Cor-
poration with the donation of the Titan V GPU used for this research. We acknowledge
support of this work by the projects “Dioni: Computing Infrastructure for Big-Data Pro-
cessing and Analysis” (MIS No. 5047222), which is implemented under the Action
“Reinforcement of the Research and Innovation Infrastructure”, and and “Bessarion”
(T6YB -00214), which is implemented under the call “Open Innovation in Culture”,
both funded by the Operational Programme “Competitiveness, Entrepreneurship and
Innovation” (NSRF 2014-2020) and co-financed by Greece and the European Union
(European Regional Development Fund).



5. REFERENCES

[1] M. C. Doukas, S. Zafeiriou, and V. Sharmanska, “Headgan:
One-shot neural head synthesis and editing,” in Proc.
IEEE/CVF International Conference on Computer Vision,
2021, pp. 14378–14387.

[2] T.-C. Wang, A. Mallya, and M.-Y. Liu, “One-shot free-view
neural talking-head synthesis for video conferencing,” in Proc.
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2021, pp. 10039–10049.

[3] E. Zakharov, A. Shysheya, E. Burkov, and V. Lempitsky, “Few-
shot adversarial learning of realistic neural talking head mod-
els,” arXiv, 2019, arXiv:1905.08233.

[4] M. Vrigkas, C. Nikou, and I.A. Kakadiaris, “Exploiting
privileged information for facial expression recognition,” in
Proc. 9th IAPR/IEEE International Conference on Biometrics,
Halmstad, Sweden, June 2016, pp. 1–8.

[5] C. Chan, S. Ginosar, T. Zhou, and A. A. Efros, “Everybody
dance now,” arXiv, 2019, arXiv:1808.07371.

[6] A. Shysheya, E. Zakharov, K. A. Aliev, R. Bashirov,
E. Burkov, K. Iskakov, A. Ivakhnenko, Y. Malkov, I. Pasech-
nik, D. Ulyanov, A. Vakhitov, and V. Lempitsky, “Textured
neural avatars,” in Proc. IEEE Conference on Computer Vi-
sion and Pattern Recognition, Long Beach, CA, June 2019,
pp. 2387–2397.

[7] T.C. Wang, M.-Y. Liu, J.Y. Zhu, G.n Liu, A. Tao, K. Jan, and
B. Catanzaro, “Video-to-video synthesis,” in Proc. Conference
on Neural Information Processing Systems, Montreal, Canada,
2018, vol. 31.

[8] H. Tang, W. Wang, D. Xu, Y. Yan, and N. Sebe, “GestureGAN
for hand gesture-to-gesture translation in the wild,” in Proc.
26th ACM International Conference on Multimedia, 2018, pp.
774–782.

[9] T. Wang, N. Sarafianos, M.H. Yang, and T. Tung, “Animatable
neural radiance fields from monocular RGB-D,” arXiv, 2022.
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