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ABSTRACT
Multiphase materials are encountered in several areas of science
and technology. Their properties are determined by the fraction of
the phases (material compounds) constituting the composite mate-
rial. Therefore, the quantitative characterization of phase fractions
is highly demanded and has been the subject of extensive studies. To
this end, a widely used technique is the segmentation of top-down
back-scattered electron SEM (BSE-SEM) images given that different
phases are depicted with pixel collections of different luminosity.
Gaussian mixture models (GMM) are one the most popular and eas-
ily implemented methods to segment the BSE-SEM images through
the deconvolution of their histograms. However, the accuracy and
the limitations of their application have not been fully investigated.
The aim of this paper is to design a neural-network approach to
fill this gap and provide a fast tool for the automatic evaluation of
the accuracy of GMM predictions for all material phases based on
the inspection of the measured SEM image histogram alone. The
proposed tool facilitates the decision-making process of an SEM
user concerning the optimum choice of a segmentation method.
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1 INTRODUCTION
During the last decades, the use of multiphase materials has been
expanded in several technology sectors enabling new applications
and providing solutions to current societal challenges (e.g., energy
[1], health [2], and environment [3, 4]). At the same time, the the-
oretical understanding of the new properties and functionalities
of these materials has attracted great interest. A key requirement
in both theory and applications is the detailed knowledge of ma-
terial structural morphology and especially of the co-existence of
multiple material compounds (phases) within its bulk. Therefore,
it is of primary concern the measurement and characterization of
the fraction and morphology of phase components in a multiphase
material. To this end, a wide spectrum of techniques has been devel-
oped [5, 6]. Among these, the SEM imaging based on the detection
of back-scattered electron (BSE) signal provides a detailed depiction
of the size and morphology of the different phases with nanometer
resolution. To translate SEM images into a quantitative measure-
ment of phase fractions, a segmentation process should be applied.
It must be mentioned that distinction of phases in BSE-SEM images
can be accomplished if phases correspond to different z-effective.
GMM is a widely used and easily implemented technique to make
segmentation through the deconvolution of the histogram of image
pixel intensities [7]. However, as expected, GMM accuracy is not
always justified, and the method has inherent limitations triggered
by specific characteristics of SEM images which undermine the
accuracy of its predictions. As part of previous work by our team
[8], we studied systematically the dependence of GMM accuracy on
specific collective parameters such as range, variance, and width
defining the position and shape of phase distributions. To quantify
the accuracy of GMM predictions for all distributions, we intro-
duced a distribution similarity (DS) measure and calculated it for a
large spectrum of the above-mentioned parameters. In particular,
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Figure 1: Schematic description of the neural network ap-
proach described in this paper. The input of the NN is a back-
scattered electron image histogram and the output is a pre-
diction of the GMM deconvolution success.

DS is defined by the equation 1):

DS = min(
OA

PDA
,
OA

RDA
) (1)

Where, OA is the overlapping area of predicted and real distribution,
PDA is the area of predicted distribution and RDA is the area of
real distribution.

The analysis has been based on the assumption that the distribu-
tions of pixel intensities belonging to all phases are known and can
be used for the calculation of DS. However, in real-world problems,
we face the inverse problem. We ignore the distribution of each
phase separately and what we have from our measurements is the
total distribution (histogram) of pixel intensities of the whole im-
age including all phases. In our previous work, we provided some
rules of thumb to guide an SEM user on the appropriateness of
GMM-based segmentation of a specific image histogram. In this
paper, we proceed to a more thorough analysis exploring the ben-
efits of a neural network (NN) approach which takes as input the
image histogram and output the DS values for all distributions (see
Figure 1). The latter can be used as quantification of the success of
GMM-based segmentation in the specific case.

In the following Section 2, we present the architecture of the
developed NN along with the limited parameter space we are using
to train and test it. The results of the application of the trained
NN are presented in Section 3. In the same Section, we discuss the
prospects of themethodwhile the paper closeswith the Conclusions
and the design of future steps in Section 4.

2 METHODOLOGY – NEURAL NETWORK
ARCHITECTURE

A synthetic dataset covering all probable configurations of phase
histograms is very large to be considered. Therefore, in this prelim-
inary work, a subspace of the total parameter space is investigated
to test the application of a NN approach in the evaluation of GMM
accuracy. This subspace is defined by the following constraints of
histograms included in the dataset used in this work. Each syn-
thetic histogram consists of four Gaussian distributions with mean
values of equal distances while the variances of participant distribu-
tions are equal, and the weights are equal too. This small subspace
is chosen to demonstrate how a NN can predict the accuracy of
another machine learning method, while additionally may reveal
differences in the predictability of internal distributions in respect

Figure 2: A brief description of the NN architecture. The first
part of the network consists of four modules described in
the (a) upper part of the figurewhere a convolutional layer is
followed by a max-pooling layer, followed by a flatten layer,
and finally, the output is reshaped and ends to a SeLu fully
connected layer. This module is repeated four times reduc-
ing the size of the output by a factor of two each time. The
second part of the NN contains 10 SeLu fully connected lay-
ers with 16 nodes each leading to a 4-nodes SeLu layer out-
put.

to the external ones. The NN training is realized in Python using
the Keras library [9].

The architecture of the NN can be separated into two parts as
depicted in Figure 2. The first part consists of four sets of layers. In
more detail, every set of this part (i.e., Module A) is composed of a
one-dimensional convolutional layer, followed by a max-pooling
layer, a flatten layer, and finally a fully connected layer. The con-
volutional kernel is set at 16 for all convolutional layers, without
padding and the stride is equal to one. The nodes in the fully con-
nected layers are set to be 128, 64, 32, and 16, respectively. The
pooling size is equal to two whilst no padding occurs, and stride
is one. In between these sets of layers, a reshaping is performed.
The second part of the NN is composed of 10 fully connected layers
consisting of 16 nodes each followed by a four-node fully connected
layer. The Scale Exponential Linear activation Unit (SeLu) [10] is
used as the activation function for all nodes while the mean squared
error is selected as the loss function. Adam optimizer is also used as
a stochastic gradient descent optimizer [11] and an early stopping
occurs when the loss function of the validation set is not improved
for 25 epochs. Finally, 80% of the dataset is used for the training, 10%
for validation, and the remaining 10% is left for the testing of the
model. The total size of the dataset consists of 241.006 histograms
along with an equal number of 4-dimensional arrays composed of
4 DSs as emerges from GMM histogram deconvolution.

3 RESULTS
Using 10-fold cross-validation, the model can achieve an R2 value
just above 0.93 during the training phase while for the validation set,
the average of R2 saturates to 0.93. Figure 3a shows a representative
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Figure 3: (a) Loss function versus epochs reveals that the NN
has been successfully trained (b) R2 values with respect to
the epochs of the training process indicate again that the
model has reached an adequate level of training.

diagram of the loss function of both training and validation sets
versus the number of epochs revealing that the model was trained
over the data set, since both losses are stabilized for epochs>50.
Additionally, the absence of any increase in the validation curve
versus epochs is an indication that overfitting is avoided.

Moreover, Figure 3b displays the R2 versus the number of epochs
and justifies again that the model has reached a satisfactory level
of training and that there is no overfitting.

A more detailed evaluation of the success of NN model predic-
tions is illustrated in Figure 4, which depicts the true DS values with
respect to predicted ones for all phase distributions. An interesting
observation is that for low DS values the prediction of these values
is a challenging task for the proposed NN. Deviations between
predicted and true DSs are larger for the external distributions with
reference to the internal ones. (cf. Figure 4 a, d and Figure 4b, c).

4 SUMMARY-CONCLUSIONS
In data analysis, it is very useful to know the accuracy of the predic-
tions of an analysis method for the specific data set before applying
it because it leads to saving time and achieving meaningful results.
In this paper, we present preliminary results from the application
of an NN-based approach to evaluate the accuracy of the GMM

Figure 4: True DS values versus predicted ones reveal the in-
competence of NN to correctly predict the success of low DS
values.

method in the deconvolution of the histogram of an SEM image
of a sample of multiphase material. The successful deconvolution
can provide an accurate assessment of the fraction of the phases
comprising the multiphase material.

To this end, we developed a NN method that consists of multiple
layers and found that it is able to predict sufficiently the accuracy
of the GMM-based segmentation for each material phase separately,
especially at high DS values. Furthermore, we found that the NN-
based predictions are worse in the evaluation of the GMM accuracy
of external distributions rather than internal distributions. This
result is in conformity with our previous work, where it has been
shown that GMM is more accurate in the internal distributions
rather than the external ones. It seems that NN can provide a useful
ML tool to predict the accuracy of GMM predictions based on the
analysis of image histogram alone.

The next steps of our work target to expand the NN method to a
more extended parametric space leading to an enhanced training
of NN with richer synthetic data. Finally, we plan to apply the
methodology to real experimental images and compare it with
other methods.
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