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Abstract
Advanced methodologies for transmitting compressed im-

ages, within acceptable ranges of transmission rate and loss of
information, make it possible to transmit a medical image through
a communication channel. Most prior works on 3D medical im-
age compression consider volumetric images as a whole but fail to
account for the spatial and temporal coherence of adjacent slices.
In this paper, we set out to develop a 3D medical image compres-
sion method that extends the 3D wavelet difference reduction al-
gorithm by computing the similarity of the pixels in adjacent slices
and progressively compress only the similar slices. The proposed
method achieves high-efficiency performance on publicly avail-
able datasets of MRI scans by achieving compression down to
one bit per voxel with PSNR and SSIM up to 52.3 dB and 0.7578,
respectively.

Introduction
Medical image compression has become a prevalent tool

with great impact on the diagnosis of diseases in clinical prac-
tice [1]. The problem of compression, and therefore transmitting
an image in real-time, given the bandwidth of the communication
channel, is of great importance, especially in a low-speed connec-
tion environment. This problem is not easy to be solved, because
medical images typically contain a huge amount of important di-
agnostic information and therefore distortion is not allowed [2].
Applications of image compression for transmission purposes are
limited by real-time constraints. On the other hand, image com-
pression applications for storage purposes are less stringent. This
is because most algorithms are not executed in real-time.

Current practice in the medical image compression field is to
reduce the size of medical image files by reversible (lossless) [3]
compression, which offers up to 3 times size reduction, or irre-
versible (lossy) [4] compression. Irreversible compression allows
for a much larger (between 8 and 25 times) size reduction without
significant loss of visual quality of the material.

There are many standards used for compressing medical im-
ages. One of the most popular image compression standards with
important medical applications is JPEG [5]. The important fea-
ture of JPEG is that it enables compression at various levels, thus
enabling the user to choose the quality of the compressed image
so that information losses are not visible to physicians. JPEG
2000 [6] is the successor of JPEG standard that provides compres-
sion with no or very little information loss, so the image quality
does not deteriorate but approximates the image quality without
compression. Compared to the JPEG standard, the JPEG 2000
standard provides a typical compression gain of 20% on average,
depending on the image features. In low bitrate applications, pre-

vious studies have shown that JPEG 2000 is superior to H.264
intra-coding [7].

There is a wide variety of image transform-based coding
techniques, which amongst others include discrete cosine trans-
form (DCT) [8] and discrete wavelet transform (DWT) [9]. For
compressing volumetric medical datasets, it appears that 3D
wavelet-based encoders outperform DCT-based solutions while
providing the required functions such as quality scaling and res-
olution, random access and region coding [10]. Narmatha et al.
[11] proposed a two-stream method for encoding and decoding
medical images by dividing and merging different regions of the
wavelet subbands. Amri et al. [12] combined into a single pro-
cessing pipeline image reduction and expansion techniques of dif-
ferent lossless compression standards such as JPEG-LS and TIFF
formats to compress medical images.

In recent years, much effort has been paid for volumet-
ric medical image compression [13, 14, 15]. Three-dimensional
medical images can be viewed as time sequences or volume to-
mographic slices of an object. Bruylants et al. [16] employed
the wavelet transformation to allow support for volumetric image
datasets. Ravichandran et al. [17] have also used the wavelet
transform to compress 3D medical images. Based on the fact that
most of the medical images are being captured in hospitals and
medical organizations using 2D and 3D monitoring techniques,
their simulation results have shown that 3D medical images have
high-frequency patterns and therefore the waveform technique al-
lows for achieving higher PSNR values even at the highest com-
pression ratio than 2D medical images.

In this paper, our objectives are: to (i) take into account the
spatial and temporal coherence of adjacent slices in a volumetric
medical image; and (ii) improve upon previous 3D-based com-
pression methods in terms of PSNR and SSIM [19]. To accom-
plish these tasks, we propose an extension of the 3D wavelet dif-
ference reduction (3D-WDR) method [20] that employs the mean
co-located pixel difference (MCPD) to estimate an optimal num-
ber of slices to be efficiently compressed in one volumetric ob-
ject. Given the requirements for the best possible reconstructed
images, the proposed method meet these objectives.

Our main contribution is the design of a volumetric med-
ical image compression method that can be easily reproduced,
is suitable for use in a variety of medical images such as MRI
and CT scans, and achieves state-of-the-art compression results
with high compression ratio and small information loss within an
acceptable range. This performance originates from computing
the spatiotemporal difference between adjacent slices in an image
volume and compress as a single volume only those slices that
exhibit the largest similarity on the pixel values. This allows us



to progressively transmit a medical image through a communica-
tion channel and also allows for a gradual improvement of image
quality. This work aspires to serve as a bar in the 3D medical
image compression domain that future works may improve upon.
We performed extensive evaluations in publicly available datasets
and achieved high compression ratios in all of them while main-
taining a high visual-quality, which ensures that compression of
medical images that are used for diagnosis, is of critical impor-
tance as diagnostic data are preserved.

Methods
The wavelet difference reduction (WDR) algorithm [20] fol-

lows the basic concepts of the set partitioning in hierarchical trees
(SPIHT) algorithm [21] by incorporating extra features that ag-
gregate the coefficients to an area of interest. By reducing the dif-
ference between the wavelet coefficients, it recognizes the impor-
tant wavelet coefficients and improves their accuracy to achieve
high compression ratios. During WDR encoding, the compressed
output produced consists of the most important coefficients along
with the series of bits that briefly describe the exact position of
the significant values. It offers good perceptual quality and high
compression rate while preserving the edges of the images. It
is suitable for compressing medical images at a low bit rate per
pixel.

In this paper, the structure of the data tree used by SPIHT
is avoided, and the principles of integrating and partitioning the
encoded bit-level without loss are preserved. Also, the WDR
method implements run-length coding (RLC) that allows the en-
coder to achieve faster transmission of image details over net-
works.

Algorithm 1: WDR algorithm.
Input : Original uncompressed image.

1 Calculate the DWT of the original image.
2 while (Predetermined number of bits is not reached) do
3 Sort the wavelet transform coefficients from the

larger scale to the finer scale.
4 Set an initial threshold: Tn = 2N , with n = 1 and

N = log2(max
(i, j)
|γ(i, j)|), where γ(i, j) are the

wavelet coefficients in the set of non-significant
coefficients and N is the total number of bit planes.

5 Sorting pass: Find the positions of the significant
coefficients concerning the threshold, and keep the
coefficients that satisfy the condition: |γ(i, j)| ≥ Tn.

6 Improvement process: Get the improvement rates of
all significant coefficients, except those found in the
sorting pass step of the current iteration.

7 Update threshold: n = n+1; Tn−1 = Tn; Tn =
Tn
2 .

8 end
Output : Compressed image.

The term “reduction of difference” refers to how the WDR
algorithm encodes the positions of significant coefficient values of
the wavelet transformation by using a difference-coding method.
These positions are not directly encoded, but instead, the dis-
tances between the important coefficients are encoded. Thus,
the WDR method encodes the path between two important co-

Algorithm 2: Proposed 3D-WDR-MCPD algorithm.
Input : Original uncompressed image.

1 Compute the average MCPD values for each slice using
eq. (1) .

2 Predefine a threshold TMCPD = 0.5.
3 Select slices with the highest spatiotemporal coherence:

MCPD≤ TMCPD and construct the 3D volume.
4 Employ Algorithm 1 to compress the optimal 3D volume.

Output : Compressed image.

efficients. The importance of the WDR method lies in the fact
that it increases the data transmission speed because the method
employs the basic concepts of the run-length coding. The gen-
eral model of the WDR method is shown in the following distinct
steps of the Algorithm 1.

In embedded wavelet-based coding, the significance map
forms a binary image; consequently, techniques that have been
employed for the coding of bi-level images apply to significance-
map coding. For example, run-length coding has a long history
of such binary-coding use. The wavelet difference reduction al-
gorithm combines run-length coding of the significance map with
an efficient lossless representation of run-length symbols to pro-
duce an embedded image coder.

WDR was originally developed as a 2D encoder but is
straightforwardly extended to 3D [22]. Also, WDR can be ex-
tended to shape adaptive by “skipping” over flat regions and not
coding any significant information for them or including them in
the run-length. This 3D extension deploys the run-length scan-
ning as a 3D raster scan of each subband of the 3D discrete
wavelet transform, which is easily accomplished in either dyadic
or packet DWT decompositions.

The proposed method is an extension of the 3D-WDR
method. Specifically, we extended the 3D-WDR method by us-
ing the mean co-located pixel difference (MCPD) to estimate the
optimal number of frames that can be encoded given the best peak
signal-to-noise ratio. MCPD measures the temporal difference be-
tween slices on the pixel values. The MCPD between two slices
of dimensions N×M i.e., slice x and slice y for each pixel is com-
puted as:

MCPD =
1

NM

N−1

∑
i=0

M−1

∑
j=0
|x(i, j)− y(i, j)| , (1)

where x(i, j) and y(i, j) correspond to the pixel value at position
(i, j) of slices x and y, respectively.

In particular, we compute the MCPD of each slice i with all
the slices that follow, where i = 1, . . .K, and K being the total
number of slices, for each MRI volume, (e.g., slice 1 with slices
2,3,4, . . .K, slice 2 with slices 3,4,5, . . .K) and construct a volu-
metric image consisting of only the slices that exhibit an average
MCPD value ≤ 0.5 to keep those with similar spatial and tem-
poral coherence. After extensive evaluation and cross-validation,
the threshold of 0.5 has been found to be the optimal value for se-
lecting the most similar slices in the spatial and temporal domain.
The performance of the proposed method for new selected MCPD
thresholds for other types of volumetric medical data should be
evaluated based on cross-validation. In case of volumetric data



such as MRI and CT exams, the term “temporal coherence” may
refer to the similarity between different slices. Note that the slices
that are not selected to be part of any volumetric image are com-
pressed separately using the standard WDR method. The main
steps of the proposed method are summarized in Algorithm 2.

Results
Dataset: To evaluate our method, a widely-used publicly

available dataset named the cancer image archive (TCIA) [18]
was used. This is a collection of medical de-identified datasets
related to a common disease such as lung cancer or brain tumor
from 20 subjects with primary newly diagnosed glioblastoma. For
each subject, two MRI exams of brain tumor are included in DI-
COM format containing 16-bit images with at least 20 slices per
MRI exam.

Evaluation metrics: For the evaluation of the results, we
computed the peak signal-to-noise ratio (PSNR) and the structural
similarity index measure (SSIM) [19]. PSNR computes the peak
signal-to-noise ratio between two images, in decibels (dB). This
ratio is a quality measurement between the original and the com-
pressed image. PSNR can take values up to infinity, the higher
the PSNR, the better the quality of the compressed image. Since
the MRI exams in the TCIA dataset contain 16-bit images, in this
case, the PSNR is computed as:

PSNR = 10log10

(
(216−1)2

MSE

)
, (2)

where MSE =
∑

N−1
i=0 ∑

M−1
j=0 (x(i, j)−x̂(i, j))2

NM with x(i, j) and x̂(i, j) cor-
respond to the pixel value at position (i, j) of the ground truth x
(original uncompressed image) and the compressed image x̂ of
dimensions N ×M, respectively. Note that, the term 216 − 1 is
the maximum pixel value in the input image data type. SSIM is
a metric that represents a visual distortion between a reference
image and the observed/compressed image. The SSIM is a func-
tion between two images x and x̂ and is computed between pairs
of local square overlapping windows x and x̂ of the two images,
respectively:

SSIM(x, x̂) =
(2µxµx̂ +C1)(2σxx̂ +C2)

(µ2
x +µ2

x̂ +C1)(σ2
x +σ2

x̂ +C2)
, (3)

where µx and µx̂ denote the mean intensity of the ground truth
and the compressed image, respectively, σx and σx̂ are the stan-
dard deviations at patches x and x̂ of the two images, σxx̂ is the
covariance of x and x̂, and C1 and C2 are constants added to avoid
instability. Values close to 1 indicate that the compressed image
preserves high visual quality (i.e., identical patches). Finally, the
mean SSIM index value is computed to evaluate the total image
similarity.

First, we computed PSNR and SSIM values for the 20 con-
secutive slices to build the 3D model used for compression. Table
1 shows the results in terms of PSNR and SSIM for 20 slices us-
ing the 3D-WDR algorithm at bit rate one bit per voxel. As it can
be seen, PSNR varies from 46.9228 to 51.3733 and SSIM varies
from 0.6403 to 0.7841.

Table 2 depicts the average MCPD values for all slices.
It can be observed that MCPD is less than 0.5 for the slices
2,4,6,15,18,19,20, in that sense a threshold of 0.5 is considered
as a reasonable choice to form our 3D model.

Table 1. Evaluation of standard 3D-WDR model in terms of
PSNR and SSIM for the 20 slices of the MRI exam.

Slice index PSNR SSIM
1 48.0704 0.7484
2 50.8077 0.7263
3 49.2582 0.7670
4 48.7388 0.7124
5 51.3304 0.7490
6 48.9123 0.6838
7 48.0288 0.7515
8 49.3198 0.7133
9 49.4259 0.6935

10 46.9228 0.7815
11 49.7743 0.7841
12 48.7383 0.6992
13 51.0344 0.7106
14 47.5173 0.7577
15 49.2868 0.7049
16 48.3499 0.7481
17 51.3733 0.6467
18 49.0812 0.6800
19 49.3517 0.6917
20 48.0205 0.6403

Table 2. Estimated MCPD values for the 20 slices of the MRI
exam.

Slice index MCPD average
1 0.6009
2 0.4716
3 0.5357
4 0.4882
5 0.5173
6 0.4784
7 0.5229
8 0.5806
9 0.5325

10 2.7478
11 0.6987
12 0.6331
13 0.6603
14 0.5302
15 0.4501
16 0.6162
17 0.6703
18 0.3852
19 0.2561
20 0.0000

In Table 3, we report the results of the proposed 3D-WDR-
MCPD method in terms of PSNR, SSIM, and PSNR improve-
ment. Specifically, PSNR varies from 50.7433 to 52.2776 and
SSIM varies from 0.6834 to 0.7810. Also, note that the PSNR
improvement with respect to the standard 3D-WDR algorithm
(Table 1) is remarkably high in terms of absolute dB difference.
For instance, PSNR for slice 2, when the standard 3D-WDR



Table 3. Evaluation of the proposed method in terms of PSNR,
SSIM and PSNR improvement for the seven slice indexes orig-
inated from the computed MCPD values in Table 2 given the
predefined threshold.

Slice index PSNR SSIM PSNR Improvement
(in dB)

2 52.2776 0.7578 1.5
4 50.6824 0.7810 1.9
6 50.7814 0.7503 1.9

15 51.0053 0.7596 1.7
18 51.9189 0.7742 2.8
19 50.7433 0.7375 1.4
20 51.8223 0.6834 3.8

Figure 1. Slice 2: (a) Original uncompress slice and (b) compressed slice

using the 3D-WDR-MCPD method for compression.

Figure 2. Slice 4: (a) Original uncompress slice and (b) compressed slice

using the 3D-WDR-MCPD method for compression.

method was employed (Table 1), is 50.8077 and SSIM is 0.7263,
while when the proposed 3D-WDR-MCPD method is used PSNR
and SSIM increase to 52.2776 and 0.7578, respectively. This
corresponds to a PSNR improvement of approximately 1.5 dB.
The maximum PSNR improvement is achieved for slice 20 as it
reaches 3.8 dB, which indicates that compressing similar slices
(7 slices) in one volume per time is more efficient than directly
compressing the 3D image as a whole.

Figures 1 and 2 depict qualitative results when the proposed
3D-WDR-MCPD method is employed for compressing slice two
and slice four, respectively. For the depicted MRI images the
highest compression rate is achieved at one bit per voxel (16 : 1)
compression ratio. Also, the visual perception of the compressed
image is retained and is very close to the original uncompressed

image. The main reason behind this is the smooth transition of
images throughout the MRI slices.

Conclusions
Medical image compression plays an important role in ef-

ficient storage, transmission, and management of these datasets.
In this paper, a 3D image compression model based on discrete
wavelet transform is proposed, which is a clinically acceptable
option for medical image compression. In particular, we extended
the standard WDR method using MCPD to select the optimal
number of slices that exhibit the highest similarity in the spatial
and temporal domain. The slices with large spatiotemporal coher-
ence are then encoded together as one volume in terms of higher
PSNR and SSIM. It is found that the perceptual quality of the
medical image is remarkably high. The results indicate that the
PSNR improvement over existing schemes may reach up to 3.8
dB and they may guide us through the implementation of a mo-
bile and web platform that may be used for the compression and
transmission of medical images in real-time.
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